Articles

Establishing the program to predict Shirt Sizes with Fuzzy Logic

This paper presents a program for prediction shirt size with a fuzzy logic technique. The Mamdani model is applied to a MISO fuzzy system with two inputs and one output. Neck girth and sleeve length are chosen as the primary dimensions, serving as input variables for this simulation model. In this study, fuzzy logic is used to select the size of the Min-Max rule. The IF-THEN structure is applied to execute commands effectively within this model. The outcome is an appropriate size. The program’s fuzzy rule matrix consists of 45 rows and 5 columns. Each row is a fuzzy rule. The first column represents the 9 sizes of necklaces. The second column represents the 5 groups of sleeve lengths. The third column represents the 9 predicted sizes in the output. The fourth column is the weight coefficient. The last column represents the logical connection type. The fuzzy logic approaches significantly reduces the time required. This approach provides an alternative method for prediction sizes that more accurately align with individual body measurements, offering a personalized fit.

Comparative Analysis of Machine Learning Algorithms for Used Car Price Prediction

After 2021, over 90 million passenger automobiles were produced, marking a significant increase in auto production. This growth has led to a flourishing used car market, which has become a highly lucrative sector. One of the most critical and fascinating areas of research within this market is automobile price prediction. Accurate price prediction models can greatly benefit buyers, sellers, and businesses in the used car industry. This paper presents a detailed comparative analysis of two supervised machine learning models: K-Nearest Neighbour and Support Vector Machine regression techniques, to predict used car prices. We utilized a comprehensive dataset of used cars sourced from the Kaggle website for training and testing our models. The K Nearest Neighbour algorithm is known for its simplicity and effectiveness in regression tasks. On the other hand, the Support Vector Machine regression technique uses a different approach, finding the optimal hyperplane that best fits the data. Both methods have their strengths and weaknesses, which we explored in this study. Our results indicated that both KNN and SVM models performed well in predicting used car prices, but with slight variations in accuracy.  Consequently, the suggested models fit as the optimum models and have an accuracy of about 83 percent for KNN and 80 percent for SVM. The results indicate that the KNN model slightly outperforms the SVM model in predicting used car prices.

Predictive Analysis for Personalized Machine: Leveraging Patient Data for Enhanced Healthcare

This research explores predictive analysis for personalized machine: leveraging patient data for enhanced healthcare. By leveraging the power of information and analytics, the healthcare industry can be driven towards a more patient-centric, proactive model that enhances outcomes and improve the overall quality of care. The objectives of the study are to: determine the significance and challenges of predictive analytics in healthcare, ascertain the data analytics techniques used in healthcare to enhance patient care, find out how predictive analytics can be applied for enhanced healthcare, and determine the ethical considerations associated with healthcare predictive analytics. This study employs the case study approach and experimental design. The study analyzes case studies of real-time deployment of predictive analytics models in healthcare centers, examines how these models enhance the healthcare delivery in those centers. Experiments were also conducted to understand how predictive analytics works. The C4.5 learning algorithm was employed to predict the presence of chronic kidney disease (CKD) in patients and differentiate between those not affected by the condition. The C4.5 classifier shows reasonable strength, evident in the large number of rightly classified occurrences (396) and a low misclassification of only 4 occurrences. This is further demonstrated by a low error rate of 0.37, as shown in table 5. The prevalence of this algorithm is emphasized by the large value of KS (0.97), indicating the classifier’s ground-breaking accuracy and performance. The performance of C4.5, featured by its minimal execution time and accuracy, puts it as a decent classifier. This characteristic makes it specifically well-suited for application in the healthcare sector, particularly for tasks involving prediction and classification. The application of data analytics methods for predictive analysis holds significant benefits in the health sector, as it gives us the power to predict and address potential threats to human health, covering different age groups, from the young ones to the elderly. This proactive method enables early disease detection, helping in timely interventions and contributing to better decision-making.

 

A Comparison of Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM) in River Water Quality Prediction

River water is a crucial natural resource utilized for various purposes, including agriculture and drinking. Human activities such as mining, industrial discharge, and improper waste management contribute to river water pollution, affecting its quality and posing risks to human health. Monitoring and predicting river water quality are essential for effective management and pollution control. The research focuses on Dissolved Oxygen (DO), and comparing of Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM) to developed prediction models. Evaluation of the models’ performance shows that the ANN model outperforms LSTM in predicting Dissolved Oxygen (DO) concentrations, achieving lower Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Although LSTM exhibits lower Mean Squared Error (MSE), the ANN model demonstrates better accuracy in minimizing the average distance between predicted and actual values. The findings suggest that ANN-based models offer good performance in river water quality prediction, with potential for further enhancement through additional variables or model architecture adjustments.