Articles

Adapting Deep-Learning in Early Yam Disease Detection Using Lenet-5 (Adam Optimizer) Convolutional Neural Network Architecture to Improve Productivity and Enhance Farmers Social Habits in the Digital Age

The agriculture sector faces significant challenges due to diseases affecting crop yields, particularly in yam cultivation. This study explores the adaptation of deep learning techniques for early detection of yam diseases using a LeNet-5 Convolutional Neural Network (CNN) architecture optimized with the Adam optimizer. The fam sides considered are; Ardokola, Zing and Mutum Biu in Taraba State, Nigeria. By leveraging advanced image processing and machine learning methodologies, we aim to develop an effective diagnostic tool that empowers farmers to identify and manage diseases promptly, ultimately improving productivity. This research not only enhances the technological capabilities of farmers in the digital age but also promotes better agricultural practices, fostering social habits that encourage knowledge sharing and community engagement. The proposed system is tested on a comprehensive dataset of yam leaf images, demonstrating its ability to accurately detect various disease conditions at 17.84%. Results indicate a significant improvement in recognition accuracy, suggesting that the integration of AI-driven solutions can transform disease management approaches in yam farming, contributing to sustainable agricultural practices and improved livelihoods for farmers.

A Review of AI-powered Diagnosis of Rare Diseases

The diagnosis of rare diseases presents significant challenges due to their low prevalence, complex symptomatology, and the scarcity of specialized knowledge. However, advancements in Artificial Intelligence (AI) offer promising solutions to these challenges. This review explores the current state of AI-powered diagnostic tools for rare diseases, focusing on the methodologies, algorithms, and platforms utilized in this emerging field. We examine how AI technologies, such as machine learning, deep learning, and natural language processing, are being integrated into clinical practice to enhance diagnostic accuracy and speed. The research also provides the examples that highlight the successes and limitations of AI in this domain, providing insights into how AI can be harnessed to improve patient outcomes in rare disease diagnosis and management.

Predictive Modeling in Remote Sensing Using Machine Learning Algorithms

Predictive modeling in remote sensing using machine learning (ML) algorithms has emerged as a powerful approach for addressing various environmental and climatic challenges. This paper explores the integration of advanced ML techniques with remote sensing data to enhance predictive capabilities for applications such as land cover classification, crop yield prediction, climate change monitoring, and disaster management. We review related works and existing systems, highlighting platforms like Google Earth Engine (GEE), NASA Earth Exchange (NEX), and Sentinel Hub, which leverage cloud computing to handle large-scale data processing and model deployment. The proposed system incorporates data acquisition, preprocessing, feature extraction, model selection and training, and prediction and visualization to provide accurate and timely predictions. Future enhancements, including deep learning integration, real-time data processing, enhanced user interfaces, and collaboration with Internet of Things (IoT) devices, are discussed to further strengthen the system’s capabilities. The paper concludes by emphasizing the potential of ML algorithms in transforming remote sensing applications, supporting informed decision-making, and improving the management of Earth’s resources.

Predictive Analysis for Personalized Machine: Leveraging Patient Data for Enhanced Healthcare

This research explores predictive analysis for personalized machine: leveraging patient data for enhanced healthcare. By leveraging the power of information and analytics, the healthcare industry can be driven towards a more patient-centric, proactive model that enhances outcomes and improve the overall quality of care. The objectives of the study are to: determine the significance and challenges of predictive analytics in healthcare, ascertain the data analytics techniques used in healthcare to enhance patient care, find out how predictive analytics can be applied for enhanced healthcare, and determine the ethical considerations associated with healthcare predictive analytics. This study employs the case study approach and experimental design. The study analyzes case studies of real-time deployment of predictive analytics models in healthcare centers, examines how these models enhance the healthcare delivery in those centers. Experiments were also conducted to understand how predictive analytics works. The C4.5 learning algorithm was employed to predict the presence of chronic kidney disease (CKD) in patients and differentiate between those not affected by the condition. The C4.5 classifier shows reasonable strength, evident in the large number of rightly classified occurrences (396) and a low misclassification of only 4 occurrences. This is further demonstrated by a low error rate of 0.37, as shown in table 5. The prevalence of this algorithm is emphasized by the large value of KS (0.97), indicating the classifier’s ground-breaking accuracy and performance. The performance of C4.5, featured by its minimal execution time and accuracy, puts it as a decent classifier. This characteristic makes it specifically well-suited for application in the healthcare sector, particularly for tasks involving prediction and classification. The application of data analytics methods for predictive analysis holds significant benefits in the health sector, as it gives us the power to predict and address potential threats to human health, covering different age groups, from the young ones to the elderly. This proactive method enables early disease detection, helping in timely interventions and contributing to better decision-making.

 

Detection of COVID-19 using Modified VGG Architectures

COVID-19 has created havoc in the world. This paper aims to study and understand the performance of modified VGG-16 and VGG-19 architectures in detecting COVID-19 using the concept of transfer learning. The algorithm has been validated using a private dataset with normal and COVID-19 positive chest X-ray images.

COVID-19 has created havoc in the world. This paper aims to study and understand the performance of modified VGG-16 and VGG-19 architectures in detecting COVID-19 using the concept of transfer learning. The algorithm has been validated using a private dataset with normal and COVID-19 positive chest X-ray images.