Articles

Predictive Modeling in Remote Sensing Using Machine Learning Algorithms

Predictive modeling in remote sensing using machine learning (ML) algorithms has emerged as a powerful approach for addressing various environmental and climatic challenges. This paper explores the integration of advanced ML techniques with remote sensing data to enhance predictive capabilities for applications such as land cover classification, crop yield prediction, climate change monitoring, and disaster management. We review related works and existing systems, highlighting platforms like Google Earth Engine (GEE), NASA Earth Exchange (NEX), and Sentinel Hub, which leverage cloud computing to handle large-scale data processing and model deployment. The proposed system incorporates data acquisition, preprocessing, feature extraction, model selection and training, and prediction and visualization to provide accurate and timely predictions. Future enhancements, including deep learning integration, real-time data processing, enhanced user interfaces, and collaboration with Internet of Things (IoT) devices, are discussed to further strengthen the system’s capabilities. The paper concludes by emphasizing the potential of ML algorithms in transforming remote sensing applications, supporting informed decision-making, and improving the management of Earth’s resources.

Predictive Analysis for Personalized Machine: Leveraging Patient Data for Enhanced Healthcare

This research explores predictive analysis for personalized machine: leveraging patient data for enhanced healthcare. By leveraging the power of information and analytics, the healthcare industry can be driven towards a more patient-centric, proactive model that enhances outcomes and improve the overall quality of care. The objectives of the study are to: determine the significance and challenges of predictive analytics in healthcare, ascertain the data analytics techniques used in healthcare to enhance patient care, find out how predictive analytics can be applied for enhanced healthcare, and determine the ethical considerations associated with healthcare predictive analytics. This study employs the case study approach and experimental design. The study analyzes case studies of real-time deployment of predictive analytics models in healthcare centers, examines how these models enhance the healthcare delivery in those centers. Experiments were also conducted to understand how predictive analytics works. The C4.5 learning algorithm was employed to predict the presence of chronic kidney disease (CKD) in patients and differentiate between those not affected by the condition. The C4.5 classifier shows reasonable strength, evident in the large number of rightly classified occurrences (396) and a low misclassification of only 4 occurrences. This is further demonstrated by a low error rate of 0.37, as shown in table 5. The prevalence of this algorithm is emphasized by the large value of KS (0.97), indicating the classifier’s ground-breaking accuracy and performance. The performance of C4.5, featured by its minimal execution time and accuracy, puts it as a decent classifier. This characteristic makes it specifically well-suited for application in the healthcare sector, particularly for tasks involving prediction and classification. The application of data analytics methods for predictive analysis holds significant benefits in the health sector, as it gives us the power to predict and address potential threats to human health, covering different age groups, from the young ones to the elderly. This proactive method enables early disease detection, helping in timely interventions and contributing to better decision-making.

 

Detection of COVID-19 using Modified VGG Architectures

COVID-19 has created havoc in the world. This paper aims to study and understand the performance of modified VGG-16 and VGG-19 architectures in detecting COVID-19 using the concept of transfer learning. The algorithm has been validated using a private dataset with normal and COVID-19 positive chest X-ray images.

COVID-19 has created havoc in the world. This paper aims to study and understand the performance of modified VGG-16 and VGG-19 architectures in detecting COVID-19 using the concept of transfer learning. The algorithm has been validated using a private dataset with normal and COVID-19 positive chest X-ray images.