Abstract :
Flood disaster is a natural disaster that ranks the third cause of economic loss worldwide. As a tropical country that has a rainy season, every year some parts of Indonesia are prone for being affected by floods. The causative factors include high rainfall and poor surface water management, making rainwater directly converted into surface water (run-off). Efforts to reduce run-off water include making biopores infiltration wells from paralon pipe material with a diameter of 10 centimeters, but because of the small volume, the biopores cannot functioned properly, so it is necessary to build infiltration wells with a larger capacity. The purpose of this research is to make a model of infiltration wells that have a larger volume than stainless steel.
This study used a pre-experimental design and is a development research of biopores infiltration wells. The stages in this research include design validation and absorption function testing.
The results of the study were the design of a box-shaped absorption container with a height of 120 cm. 100 cm wide and 100 cm long, made of 304 stainless steel, with an inlet and outlet holes for rainwater, a bottom absorption area, and has a lid that is easy to open for cleaning. In the function test, it was obtained the ability to accommodate rainwater of 1.2 cubic meters and the ability to absorb water of 0.9 liters per second on the soil of the test location, so that this infiltration box is estimated to be able to accommodate rainfall of 120 mm a day.
The conclusion is that this rainwater absorption container is able to accommodate rainwater while absorbing water so that it can be an alternative technology for preventing flood.
Keywords :
Design, Flood, Infiltration well, Stainless steel.References :
1. Alwan, A. H. (2019). Modeling of Bending Properties of Stainless Steel 304 Sheets Welded by Tungsten Inert Gas Welding Process. Al-Khwarizmi Engineering Journal, 15(4), 10–22. https://doi.org/10.22153/kej.2019.09.003
2. Antomo, SWS., Slamet S. ( 2015) . Rancangan dimensi sumur resapan di Kelurahan Minomartani, Kecamatan Ngaglik, Kabupaten Sleman. Jurnal Bumi Indonesia. VOLUME 6, NOMOR 3, TAHUN 2017 retrieved from : http://lib.geo.ugm.ac.id/ojs/index.php/jbi/article/view/756/0
3. Atap. (2021). Air permukaan pengertian, karakteristik dan jenis.
Https://www.Gramedia.Com/Literasi/Air-Permukaan . Retrieved December 20, 2021, from https://www.gramedia.com
4. Belladona, M., Nasir, N., & Agustomi, E. (2017). Design of infiltration well to reduce inundation in Rawa Makmur Village. Design of Infiltration Well to Reduce Inundation in Rawa Makmur Village.
https://jurnal.umj.ac.id/index.php/JASAT/article/view/3163
5. BMKG Republik Indonesia. (2021). Informasi kimia air hujan. BMKG.Co.Id. Retrieved December 21, 2021, from https://www.bmkg.go.id/kualitas-udara/informasi-kimia-air-hujan
6. BNPB Pemerintah DKI Jakarta. (2017). Data rekapitulasi kejadian banjir bulan januari 2015. Https://Data.Jakarta.Go.Id . Retrieved December 21, 2021, from
https://data.jakarta.go.id/dataset/data-rekapitulasi-kejadian-banjir-bulan-januari-2015
7. Champisano A., E. Creaco., C.Modica ( 2011). Simplified approach for the design of infiltration trenches. Journal Water Science Technology , 64 (6): 1362–1367. https://doi.org/10.2166/wst.2011.170
8. Chen, Shuo, Et all (2021). Modelling the effect of rainfall patterns on the runoff control performance of permeable pavements. Water Sci Technol (2021) 84 (7): 1566–1578. DOI: https://doi.org/10.2166/wst.2021.352
9. Duppa., Hakim ( 2017). Sumur resapan untuk mengurangi genangan air dan banji. Indonesian Journal of Fundamental Sciences. . Vol 3, No 1 (2017) DOI:https://doi.org/10.26858/ijfs.v3i1.4380
10. Dinas Kebersihan Pemerintah DKI Jakarta. (2012). Dinas Kebersihan Pemerintah DKI Jakarta. Http://Inswa.or.Id. Retrieved December 21, 2021, from http://inswa.or.id/wpcontent/uploads/2012/11/BAB-3-Profil-DKI-Jakarta1.pdf
11. Fachrurazie, C., Yulian F.A., Dewi SS. ( 2002). Analisa drainase sumur resapan pada kampus UNLAM Banjar Baru. Journal Info-Tehnik. Vol 3, No 1 (2002) DOI:http://dx.doi.org/10.20527/infotek.v3i1.454 Retrieved from :
https://ppjp.ulm.ac.id/journal/index.php/infoteknik/article/view/454
12. Fajar, J. (2020). Curah hujan paling ekstrem dalam sejarah jai pemicu banjir Jakarta. Www.Mongabay.Co.Id. Retrieved December 26, 2021, from
https://www.mongabay.co.id/2020/01/03/bmkg-curah-hujan-paling-ekstrim-dalam-sejarah-jadipemicu-banjir-jakarta/
13. Fakhrudin, M. (2015). Zero Runoff untuk Pengendalian Banjir di Jakarta. Lipi.Go.Id. Retrieved December 26, 2021, from http://lipi.go.id/publikasi/zero-runoff-untuk-pengendalian-banjir-dijakarta/2086
14. Fawaid, M., Jamari, Rifky, & Sri. (2012). Karakteristik AISI 304 sebagai material friction Welding, Prosiding SNST ke-3 Fakultas Tehnik Universitas Wachid Hasyim Semarang. Https://Media.Neliti.Com. Retrieved December 26, 2021, from https://176556-ID-karakteristik-aisi304-sebagai-material.pdf
15. Findayani, A. (2018). KESIAP SIAGAAN MASYARAKAT DALAM PENANGGULANGAN BANJIR DI KOTA SEMARANG. Jurnal Geografi : Media Informasi Pengembangan dan Profesi Kegeografian, 12(1), 102-114. DOI: https://doi.org/10.15294/jg.v12i1.8019 Retrieved from
https://journal.unnes.ac.id/nju/index.php/JG/article/viewFile/8019/5561
16. Harsoyo, B. (2013). MENGULAS PENYEBAB BANJIR DI WILAYAH DKI JAKARTA DARI SUDUT PANDANG GEOLOGI, GEOMORFOLOGI DAN MORFOMETRI SUNGAI. Jurnal Sains & Teknologi Modifikasi Cuaca, 14(1), 37. https://doi.org/10.29122/jstmc.v14i1.2680
17. Badan Pusat Statistik Pemerintah Republik Indonesia. (2021). Curah hujan di Stasiun Kemayoran. Https://Jakarta.Bps.Go.Id. Retrieved December 26, 2021, from
https://jakarta.bps.go.id/indicator/151/373/1/curah-hujan-di-stasiun-kemayoran-menurut-bulan.html
18. Kaźmierczak, A., & Cavan, G. (2011). Surface water flooding risk to urban communities: Analysis of vulnerability, hazard and exposure. Landscape and Urban Planning, 103(2), 185–197. https://doi.org/10.1016/j.landurbplan.2011.07.008
19. Kusumastuti, D.I., Jokowinarno, D., Khotimah, S.N., & Dewi, C.S. (2017). The Use of Infiltration Wells to Reduce the Impacts of Land Use Changes on Flood Peaks: An Indonesian Catchment Case Study. Pertanika Journal of Science and Technology 25(2):407-424
20. Kementrian lingkungan hidup. (2021). Inovasi : peresapan biopori. Http://Ditjenppi.Menlhk.Go.Id. Retrieved December 26, 2021, from http://ditjenppi.menlhk.go.id/kcpi/index.php/inovasi/198peresapan-air-dan-bangunan-terjunan-air-bta
21. Pudjianto, R. (2017). Mengurai benang kusut banjir Jakarta. Https://Rujak.Org. Retrieved December 26, 2021, from https://rujak.org/mengurai-benang-kusut-banjir-jakarta/
22. Prasetia, Irfan (2014). Design of Infiltration well in wetlands area that suitable fot giving maximum ground water recharge. Journal of Wetlands Environmental Management 2( 2) 2014. DOI: http://dx.doi.org/10.20527/jwem.v2i2.30 Retrieved from : https://ijwem.ulm.ac.id/index.php/ijwem/article/view/30
23. Pratikto., Indah PS. ( 2016). Beton Geopolymer non Pasir untuk buis beton. Jurnal Poli-tekhnologi. Vol. 14 No. 1 (2015) . https://doi.org/10.32722/pt.v14i1.734 Retrieved from : https://jurnal.pnj.ac.id/index.php/politeknologi/article/view/734
24. Song, Lianying., et all ( 2021). Comparison between different infiltration models to describe the infiltration of permeable brick pavement system via a laboratory-scale experiment. Water Sci Technol (2021) 84 (9): 2214–2227.
DOI: https://doi.org/10.2166/wst.2021.437 Retrieved from:
https://iwaponline.com/wst/article/84/9/2214/84496/Comparison-between-different-infiltrationmodels
25. Yoo, Chulsang., et all (2016). Simulation of infiltration facilities using the SEEP/W model and quantification of flood runoff reduction effect by the decrease in CN. Water Sci Technol (2016) 74 (1): 118–129. https://doi.org/10.2166/wst.2016.189 Retrieved from : https://iwaponline.com/wst/article-abstract/74/1/118/19152/ Simulation-of-infiltration-facilitiesusing-the?redirectedFrom=fulltext