Abstract :
The research has been carried out to determine the energy gap of the compound murrastanine-a conjugated with period 4 metals. The calculation of the energy gap is carried out theoretically using computational methods with density functional theory (DFT) and the basis set 6-31G*/B3LYP through NWChem software. The results showed that all period 4 metal conjugations could reduce the energy gap of the murrastanine-a compound except for conjugation with gallium metal. The energy gap of the murrastanine-a compound decreased from 4.479 eV to 4.444 until 0.019 eV. The presence of conjugation with metals makes the energy gap of murrastanine-a diverse so that it can increase its potential use. CaM2, CuM2, and AsM5 complexes can be potential as high-temperature sensors. CrM6 and FeM2 complexes can be potential as solar cells. KM, CaM2, TiM4, ZnM2, GeM2, and AsM3 complexes can be potential as blue LED devices. Complex compounds resulting from the conjugation process with period 4 metals can be formed stably except for complexes with potassium and calcium metals which are characterized by the absence of charge distribution.
Keywords :
DFT, Energy gap, Murrastanine-a, Organic semiconductor, Period 4 metals.References :
- Oktaviani and Astuti, “Sintesis Lapisan Tipis Semikonduktor dengan Bahan Dasar Tembaga (Cu) Menggunakan Chemical Bath Deposition,” J. Fis. Unand, vol. 3, no. 1, pp. 53–58, 2014.
- W. Böer and U. W. Pohl, “The Origin of Band Structure,” in Semiconductor Physics, Cham: Springer International Publishing, 2018, pp. 183–206.
- Horley, P. J. G. Ribeiro, J. A. A. Martinez, and V. J. R. Vieira, “Semiconductor Fundamentals,” in Semiconductors Synthesis, Properties and Applications, M. I. Pech-Canul and N. M. Ravindra, Eds. Cham: Springer International Publishing, 2019, pp. 1–36.
- Wahyudah, “Kajian Teroritis Penentuan Kompleks Delfidin sebagai Bahan Dasar Fotosensor,” Universitas Negeri Surabaya, 2016.
- Prasad and V. Nath, “An Overview of Temperature Sensors,” in Proceeding of the Second International Conference on Microelectronics, Computing & Communication Systems (MCCS 2017), 2019, pp. 777–784.
- Zhang, “4H-Silicon Carbide PN Diode for Harsh Environment Temperature Sensing Applications,” Berkeley, 2014.
- Zhuge et al., “Nanostructured Materials and Architectures for Advanced Infrared Photodetection,” Adv. Mater. Technol., vol. 2, no. 8, p. 1700005, Aug. 2017.
- Rühle, “Tabulated values of the Shockley–Queisser limit for single junction solar cells,” Sol. Energy, vol. 130, pp. 139–147, Jun. 2016.
- Freunek, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics, vol. 3, no. 1, pp. 59–64, Jan. 2013.
- Jarosz, R. Marczyński, and R. Signerski, “Effect of band gap on power conversion efficiency of single-junction semiconductor photovoltaic cells under white light phosphor-based LED illumination,” Mater. Sci. Semicond. Process., vol. 107, p. 104812, Mar. 2020.
- Fang, F. Zhang, S. Yuan, H. Zeng, and J. Song, “Recent advances and prospects toward blue perovskite materials and light-emitting diodes,” InfoMat, vol. 1, no. 2, pp. 211–233, Jun. 2019.
- Pamungkas and I. G. M. Sanjaya, “Kajian Teoritis untuk Menentukan Celah Energi Porfirin Terkonjugasi Logam Kalsium Menggunakan Toeri Fungsional Kerapatan (DFT),” Unesa J. Chem., vol. 2, no. 1, pp. 54–61, 2013.
- Zhou and Y. Zhou, “Introduction to Organic-Inorganic Heterojunction,” in Optoelectronic Organic–Inorganic Semiconductor Heterojunctions, Y. Zhou, Ed. London: CRC press, 2021, pp. 1–9.
- -P. Tan, A. M. Ali, M. A. Nafiah, K. Awang, and K. Ahmad, “Isolation and cytotoxic investigation of new carbazole alkaloids from Murraya koenigii (Linn.) Spreng,” Tetrahedron, vol. 71, no. 23, pp. 3946–3953, Jun. 2015.
- Kubota, S. Hirata, Y. Shibano, O. Hirata, M. Yahiro, and C. Adachi, “Liquid Carbazole Substituted with a Poly(ethylene oxide) Group and Its Application for Liquid Organic Light-emitting Diodes,” Chem. Lett., vol. 41, no. 9, pp. 934–936, Sep. 2012.
- A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed. New York: John Wiley & Sons, 1988.
- P. Hanusa, “Group 1s and 2s Metals,” in Comprehensive Coordination Chemistry II, 2nd ed., J. A. McCleverty and T. J. Meyer, Eds. New York: Elsevier, 2003, pp. 1–92.
- Levason and G. Reid, “Arsenic, Antimony, and Bismuth,” in Comprehensive Coordination Chemistry II, 2nd ed., J. A. McCleverty and T. J. Meyer, Eds. New York: Elsevier, 2003, pp. 465–544.
- Parr, “Germanium, Tin, and Lead,” in Comprehensive Coordination Chemistry II, 2nd ed., J. A. McCleverty and T. J. Meyer, Eds. New York: Elsevier, 2003, pp. 545–608.
- H. Robinson, “Aluminum and Gallium,” in Comprehensive Coordination Chemistry II, 2nd ed., J. A. McCleverty and T. J. Meyer, Eds. New York: Elsevier, 2003, pp. 347–382.
- Tanaka, “Electronic Structures of Organic Semiconductors,” in Organic Semiconductors for Optoelectronic, 1st ed., H. Naito, Ed. Chichester: John Wiley & Sons, 2021, pp. 1–40.
- Jensen, Introduction to Computational Chemistry, 3rd ed. Chichester: John Wiley & Sons, 2017.
- A. Miranda and Quintana, “Density Functional Theory for Chemical Reactivity,” in Conceptual Density Functional Theory and Its Application in The Chemical Domain, N. Islam and S. Kaya, Eds. Oakville: Apple Academic Press, 2018, pp. 15–44.
- T. Apriliani, “Studi Komputasi Sifat Elektronik Senyawa Turunan Carbazole sebagai Sensitiser pada Dye-Sensitized Solar Cell (DSSC),” Institut Teknologi Sepuluh Nopember Surabaya, 2017.
- Olsen, “An Introduction and Overview of Basis Sets for Molecular and Solid-State Calculations,” in Basis Sets in Computational Chemistry, E. Perlt, Ed. irvine: Springer Nature Switzerland AG, 2020, pp. 1–16.
- Valiev et al., “NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations,” Comput. Phys. Commun., vol. 181, no. 9, pp. 1477–1489, Sep. 2010.
- Khorsand Zak, N. S. Abd Aziz, A. M. Hashim, and F. Kordi, “XPS and UV–vis studies of Ga-doped zinc oxide nanoparticles synthesized by gelatin based sol-gel approach,” Ceram. Int., vol. 42, no. 12, pp. 13605–13611, Sep. 2016.
- Narayanan and D. NK, “Ga Dopant Induced Band Gap Broadening and Conductivity Enhancement in Spray Pyrolysed Zn0.85Ca0.15O thin Films,” Mater. Res., vol. 21, no. 6, pp. 1–7, Sep. 2018.
- Rosyidah, “Sintesis Nanopartikel Zn1-xAlxO dengan Metode Kopresipitasi dan Karakterisasi Sifat Listrik,” Institut Teknologi Sepuluh Nopember, 2016.
- L. Masterton, C. N. Hurley, and E. J. Neth, Chemistry: Principles, and Reactions, 7th ed. Belmont: Brooks/Cole Cengage Learning, 2012.
- A. Adegoke, “Chemical Derivatization Methodologies for UV-Visible Spectrophotometric Determination of Pharmaceuticals,” Int. J. Pharm. Sci. Rev. Res., vol. 14, no. 2, pp. 6–24, 2012.
- Muthaiah, A. Bhatia, and M. Kannan, “Stability of Metal Complexes,” in Stability and Applications of Coordination Compounds, A. Srivastva, Ed. London: IntechOpen, 2020.