Abstract :
Robots have helped revolutionize manufacturing processes by lending an assisting hand to humans. Robots have proven to be more effective and efficient than humans, even though humans still possess the mental prowess to help them function. Robots assist in activities like assembling, carrying heavy objects, performing strenuous tasks, welding mechanical parts, and quality inspection. Robots have several advantages over humans like being more accurate, cost effective, faster, and reliable. Nevertheless, robots still have their downsides like being too costly to implement and technically complex, especially for small businesses. This research paper comprehensively assesses the integration of robotic automation in manufacturing, focusing specifically on its benefits and challenges for quality assurance. Quality assurance is an essential component of the manufacturing process, as without it the process is never complete, manufacturing industries adhere to specific standards for their products to avoid causing harm to the end consumer in the long run, hence the relevance of robotic automation in this process. Robots are very relevant in the aspect of quality assurance, as they possess special devices which help in inspecting products during and after production. Through a thorough review of articles on this subject matter from reliable databases, this article discusses in details and suggests better ways of integrating robots in industries for more effective quality assurance.
Keywords :
Automation, Cobots, Industry 4.0, Manufacturing, Quality Control, Robots., TechnologyReferences :
- Adebayo, R. A., Obiuto, N. C., Festus-Ikhuoria, I. C., & Olajiga, O. K. (2024). Robotics in manufacturing: A review of advances in automation and workforce implications. International Journal of Advanced Multidisciplinary Research and Studies, 4(2), 632-638.
- Alzarok, H., Fletcher, S., & Longstaff, A. P. (2020). Survey of the current practices and challenges for vision systems in industrial robotic grasping and assembly applications. Advances in Industrial Engineering and Management, 9(1), 19-30.
- Amaka, M., & Nnenna, V. (2021). Robotic Process Automation (robotic process automation): Its Application and the Place for Accountants in the 21st Century. 2(1), 12.
- Ammar, M., Haleem, A., Javaid, M., Bahl, S., & Verma, A. S. (2022). Implementing Industry 4.0 technologies in self-healing materials and digitally managing the quality of manufacturing. Materials Today: Proceedings, 52, 2285-2294.
- Asatiani, A., & Penttinen, E. (2016). Turning robotic process automation into commercial success–Case OpusCapita. Journal of Information Technology Teaching Cases, 6(2), 67-74.
- Ashima, R., Haleem, A., Bahl, S., Javaid, M., Mahla, S. K., & Singh, S. (2021). Automation and manufacturing of smart materials in Additive Manufacturing technologies using Internet of Things towards the adoption of Industry 4.0. Materials Today: Proceedings, 45, 5081-5088.
- Asimov, I. (1942). I, Robot. In Runaround. New York: Spectra Books.
- Azarian, M., Yu, H., Solvang, W. D., & Shu, B. (2020). An introduction of the role of virtual technologies and digital twin in industry 4.0. In Advanced Manufacturing and Automation IX 9th (pp. 258-266). Springer Singapore.
- Becker, S., Bryman, A., Ferguson, H., & Ferguson, T. H. (Eds.). (2012). Understanding research for social policy and social work: themes, methods and approaches. policy press.
- Bedada, W. B., Kalawoun, R., Ahmadli, I., & Palli, G. (2020). A safe and energy efficient robotic system for industrial automatic tests on domestic appliances: Problem statement and proof of concept. Procedia Manufacturing, 51, 454-461.
- Bi, Z. M., Luo, C., Miao, Z., Zhang, B., Zhang, W. J., & Wang, L. (2021). Safety assurance mechanisms of collaborative robotic systems in manufacturing. Robotics and Computer-Integrated Manufacturing, 67, 102022.
- Bonci, A., Longhi, S., Nabissi, G., & Verdini, F. (2019, September). Predictive Maintenance System using motor current signal analysis for Industrial Robot. In 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1453-1456). IEEE.
- Bousdekis, A., Lepenioti, K., Apostolou, D., & Mentzas, G. (2021). A review of data-driven decision-making methods for industry 4.0 maintenance applications. Electronics, 10(7), 828.
- Brogårdh, T. (2007). Present and future robot control development—An industrial perspective. Annual Reviews in Control, 31(1), 69-79.
- Buhl, J. F., Grønhøj, R., Jørgensen, J. K., Mateus, G., Pinto, D., Sørensen, J. K., … & Chrysostomou, D. (2019). A dual-arm collaborative robot system for the smart factories of the future. Procedia manufacturing, 38, 333-340.
- Campilho, R. D., & Silva, F. J. (2023). Industrial Process Improvement by Automation and Robotics. Machines, 11(11), 1011.
- Chacón-Montero, J., Jiménez-Ramírez, A., & Enríquez, J. (2019). Towards a method for automated testing in robotic process automation projects. Proceedings – IEEE/ACM 14th International Workshop on Automation of Software Test, AST 2019, pp., (pp. 42–47). doi:10.1109/AST.2019.00012
- Chryssolouris, G. (2013). Manufacturing systems: theory and practice. Springer Science & Business Media.
- Chryssolouris, G., Mavrikios, D., Papakostas, N., Mourtzis, D., Michalos, G., & Georgoulias, K. (2009). Digital manufacturing: history, perspectives, and outlook. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223(5), 451-462.
- Cohen, M., Rozario, A., & Zhang, C. (2019). Exploring the Use of Robotic Process Automation (RPA) in Substantive Audit Procedures. CPA Journal, 89(7).
- Cooper, L. A., Holderness Jr, D. K., Sorensen, T. L., & Wood, D. A. (2019). Robotic process automation in public accounting. Accounting Horizons, 33(4), 15-35.
- Costa, D. A. D. S., Mamede, H. S., & Silva, M. M. D. (2022). Robotic Process Automation (RPA) adoption: a systematic literature review. Engineering Management in Production and Services, 14(2).
- Definition of ROBOT. From https://www.merriam-webster.com/dictionary/robot
- Demir, H., & Sarı, F. (2020). The effect of artificial intelligence and industry 4.0 on robotic systems. Engineering on Energy Materials, Iksad Publications, 51-72.
- Dey, S., & Das, A. (2019). Robotic process automation: assessment of the technology for transformation of business processes. International Journal of Business Process Integration and Management, 9(3), 220-230.
- Driscoll, T. (2018). Value Through Robotic Process Automation: Replacing labor–and transaction-intensive processes with RPA can reduce costs while improving efficiency and quality. Strategic finance, 99(9), 70-72.
- Dzedzickis, A., Subačiūtė-Žemaitienė, J., Šutinys, E., Samukaitė-Bubnienė, U., & Bučinskas, V. (2021). Advanced applications of industrial robotics: New trends and possibilities. Applied Sciences, 12(1), 135.
- ElMaraghy, H., Monostori, L., Schuh, G., & ElMaraghy, W. (2021). Evolution and future of manufacturing systems. CIRP Annals, 70(2), 635-658.
- Emmi, L., Le Flécher, E., Cadenat, V., & Devy, M. (2021). A hybrid representation of the environment to improve autonomous navigation of mobile robots in agriculture. Precision Agriculture, 22(2), 524-549.
- Fast-Berglund, Å., & Romero, D. (2019, August). Strategies for implementing collaborative robot applications for the operator 4.0. In IFIP International Conference on Advances in Production Management Systems (pp. 682-689). Cham: Springer International Publishing.
- Feng, K., Lei, M., Wang, X., Zhou, B., & Xu, Q. (2023). A Flexible Bidirectional Interface with Integrated Multimodal Sensing and Haptic Feedback for Closed‐Loop Human–Machine Interaction. Advanced Intelligent Systems, 5(11), 2300291.
- Fernandez, D., & Aman, A. (2021). The challenges of implementing robotic process automation in global business services. International Journal of Business and Society, 22(3), 1269-1282.
- Fersht, P., & Slaby, J. R. (2012). Robotic automation emerges as a threat to traditional low-cost outsourcing. Horses for Sources, London, 1, 18.
- Filipescu, A., Ionescu, D., Filipescu, A., Mincă, E., & Simion, G. (2021). Multifunctional technology of flexible manufacturing on a mechatronics line with IRM and CAS, Ready for Industry 4.0. Processes, 9(5), 864.
- Flechsig, C., Anslinger, F., & Lasch, R. (2022). Robotic Process Automation in purchasing and supply management: A multiple case study on potentials, barriers, and implementation. Journal of Purchasing and Supply Management, 28(1), 100718.
- Fung, H. P. (2014). Criteria, use cases and effects of information technology process automation (ITPA). Advances in Robotics & Automation, 3.
- Galbraith, A., & Podhorska, I. (2021). Artificial intelligence data-driven internet of things systems, robotic wireless sensor networks, and sustainable organizational performance in cyber-physical smart manufacturing. Economics, Management & Financial Markets, 16(4).
- Genta, G., Galetto, M., & Franceschini, F. (2020). Inspection procedures in manufacturing processes: recent studies and research perspectives. International Journal of Production Research, 58(15), 4767-4788.
- George, A. S., & George, A. H. (2023). The Cobot Chronicles: Evaluating the Emergence, Evolution, and Impact of Collaborative Robots in Next-Generation Manufacturing. Partners Universal International Research Journal, 2(2), 89-116.
- Gotthardt, M., Koivulaakso, D., Paksoy, O., Saramo, C., Martikainen, M., & Lehner, O. (2020). Current state and challenges in the implementation of smart robotic process automation in accounting and auditing. ACRN Journal of Finance and Risk Perspectives.
- Grau, A., Indri, M., Bello, L. L., & Sauter, T. (2020). Robots in industry: The past, present, and future of a growing collaboration with humans. IEEE Industrial Electronics Magazine, 15(1), 50-61.
- Groshev, M., Guimarães, C., Martín-Pérez, J., & de la Oliva, A. (2021). Toward intelligent cyber-physical systems: Digital twin meets artificial intelligence. IEEE Communications Magazine, 59(8), 14-20.
- Hawari, M. K., & Apandi, N. A. (2021). Industry 4.0 with intelligent manufacturing 5G mobile robot based on genetic algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 23(3), 1376-1384.
- Hegde, S., Gopalakrishnan, S., & Wade, M. (2017). Robotics in securities operations. Journal of securities operations & custody, 10(1), 29-37.
- Hofmann, E., Sternberg, H., Chen, H., Pflaum, A., & Prockl, G. (2019). Supply chain management and Industry 4.0: conducting research in the digital age. International Journal of Physical Distribution & Logistics Management, 49(10), 945-955.
- Hofmann, P., Samp, C., & Urbach, N. (2020). Robotic process automation. Electronic markets, 30(1), 99-106.
- Hoover, W., Guerra-Zubiaga, D. A., Banta, J., Wandene, K., Key, K., & Gonzalez-Badillo, G. (2022, October). Industry 4.0 trends in intelligent manufacturing automation exploring machine learning. In ASME International Mechanical Engineering Congress and Exposition (Vol. 86649, p. V02BT02A028). American Society of Mechanical Engineers.
- Hoss, A. (2022). Analysis of challenges and opportunities of collaborative robots for quality control in manufacturing.
- Jaber, A. A. (2016). Design of an intelligent embedded system for condition monitoring of an industrial robot. Springer.
- Januszewski, A., Kujawski, J., & Buchalska-Sugajska, N. (2021). Benefits of and obstacles to RPA implementation in accounting firms. Procedia Computer Science, 192, 4672-4680.
- Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R. (2022). Significant applications of Cobots in the field of manufacturing. Cognitive Robotics, 2, 222-233.
- Kahouadji, M., Lakhal, O., Yang, X., Belarouci, A., & Merzouki, R. (2021, June). System of robotic systems for crack predictive maintenance. In 2021 16th International Conference of System of Systems Engineering (SoSE) (pp. 197-202). IEEE.
- Khan, A., Mineo, C., Dobie, G., Macleod, C., & Pierce, G. (2021). Vision guided robotic inspection for parts in manufacturing and remanufacturing industry. Journal of Remanufacturing, 11(1), 49-70.
- Kirchmer, M. (2017). Robotic process automation–pragmatic solution or dangerous illusion?. BTOES Insights, June, 17.
- Klingenberg, C. O., Borges, M. A. V., & Antunes Jr, J. A. V. (2021). Industry 4.0 as a data-driven paradigm: a systematic literature review on technologies. Journal of manufacturing technology management, 32(3), 570-592.
- Kumar, S., Savur, C., & Sahin, F. (2020). Survey of human–robot collaboration in industrial settings: Awareness, intelligence, and compliance. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(1), 280-297.
- Lacity, M. C., & Willcocks, L. P. (2016). A new approach to automating services. MIT Sloan Management Review, 58(1), 41-49.
- Lacity, M. C., & Willcocks, L. P. (2016b). Robotic Process Automation at Telefónica O2. MIS Quarterly
- Lahtinen, L., Mahlamäki, T., & Myllärniemi, J. (2023). Benefits and Challenges of Robotic Process Automation. In International Conference on Knowledge Management and Information Systems (pp. 249-255). SCITEPRESS.
- Lee, N. C. A., Wang, E. T., & Grover, V. (2020). IOS drivers of manufacturer-supplier flexibility and manufacturer agility. The Journal of Strategic Information Systems, 29(1), 101594.
- Leshob, A., Bourgouin, A., & Renard, L. (2018, October). Towards a process analysis approach to adopt robotic process automation. In 2018 IEEE 15th international conference on e-business engineering (ICEBE) (pp. 46-53). IEEE.
- Madakam, S., Holmukhe, R. M., & Jaiswal, D. K. (2019). The future digital work force: robotic process automation (RPA). JISTEM-Journal of Information Systems and Technology Management, 16, e201916001.
- Massaro, A., & Galiano, A. (2020). Infrared thermography for intelligent robotic systems in research industry inspections: Thermography in industry processes. In Handbook of Research on Advanced Mechatronic Systems and Intelligent Robotics (pp. 98-125). IGI Global.
- Matheson, E., Minto, R., Zampieri, E. G., Faccio, M., & Rosati, G. (2019). Human–robot collaboration in manufacturing applications: A review. Robotics, 8(4), 100.
- Mohamed, N., Al-Jaroodi, J., & Lazarova-Molnar, S. (2019, April). Industry 4.0: Opportunities for enhancing energy efficiency in smart factories. In 2019 IEEE International Systems Conference (SysCon) (pp. 1-7). IEEE.
- Moisescu, M. A., Sacala, I. S., Dumitrache, I., & Caramihai, S. (2018). Retracted: Predictive maintenance and robotic system design. Journal of Fundamental and Applied Sciences, 10(4S), 234-239.
- Nagy, M., & Lăzăroiu, G. (2022). Computer vision algorithms, remote sensing data fusion techniques, and mapping and navigation tools in the Industry 4.0-based Slovak automotive sector. Mathematics, 10(19), 3543.
- Nayak, A., Satpathy, I., Patnaik, B. C. M., Gujrati, R., & Uygun, H. (2023). Benefits of Robotic Process Automation (RPA): Today and Tomorrow of the Manufacturing Industries. In Application and Adoption of Robotic Process Automation for Smart Cities (pp. 101-123). IGI Global.
- Okunade, B. A., Adediran, F. E., Balogun, O. D., Maduka, C. P., Adegoke, A. A., & Daraojimba, R. E. (2023). Gender policies and women’s empowerment in nigeria: an analytical review of progress and barriers. International Journal of Applied Research in Social Sciences, 5(10), 543-565.
- Osman, C. C. (2019). Robotic Process Automation: Lessons Learned from Case Studies. Informatica economica, 23(4).
- Owebor, K., Diemuodeke, O. E., Briggs, T. A., Eyenubo, O. J., Ogorure, O. J., & Ukoba, M. O. (2022). Multi-criteria optimisation of integrated power systems for low-environmental impact. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 3459-3476.
- Papavasileiou, A., Michalos, G., & Makris, S. (2024). Quality control in manufacturing–review and challenges on robotic applications. International Journal of Computer Integrated Manufacturing, 1-37.
- Pires, F., Cachada, A., Barbosa, J., Moreira, A. P., & Leitão, P. (2019, July). Digital twin in industry 4.0: Technologies, applications and challenges. In 2019 IEEE 17th international conference on industrial informatics (INDIN) (Vol. 1, pp. 721-726). IEEE.
- Pyzdek, T., & Keller, P. (2013). The handbook for quality management: A complete guide to operational excellence. McGraw-Hill.
- Radke, A. M., Dang, M. T., & Tan, A. (2020). Using robotic process automation (RPA) to enhance item master data maintenance process. LogForum, 16(1).
- Rahman, A., Jin, J., Rahman, A., Cricenti, A., Afrin, M., & Dong, Y. N. (2019). Energy-efficient optimal task offloading in cloud networked multi-robot systems. Computer Networks, 160, 11-32.
- Rana, J. A., & Jani, S. Y. (2023). An integrated Industry 4.0-Sustainable Lean Six Sigma framework to improve supply chain performance: a decision support study from COVID-19 lessons. Journal of Global Operations and Strategic Sourcing, 16(2), 430-455.
- Robot definition and meaning. Retrieved March 15, 2022, from https://www.collinsdictionary.com/dictionary/english/robot
- Rutschi, C., & Dibbern, J. (2020). Towards a framework of implementing software robots: Transforming human-executed routines into machines. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 51(1), 104-128.
- Sanni, O., Adeleke, O., Ukoba, K., Ren, J., & Jen, T. C. (2024). Prediction of inhibition performance of agro-waste extract in simulated acidizing media via machine learning. Fuel, 356, 129527.
- Schmitz, M., Dietze, C., & Czarnecki, C. (2019). Enabling digital transformation through robotic process automation at Deutsche Telekom. Digitalization cases: How organizations rethink their business for the digital age, 15-33.
- Sherwani, F., Asad, M. M., & Ibrahim, B. S. K. K. (2020, March). Collaborative robots and industrial revolution 4.0 (ir 4.0). In 2020 International Conference on Emerging Trends in Smart Technologies (ICETST) (pp. 1-5). IEEE.
- Siderska, J. (2021). The adoption of robotic process automation technology to ensure business processes during the COVID-19 pandemic. Sustainability, 13(14), 8020.
- Sigov, A., Ratkin, L., Ivanov, L. A., & Xu, L. D. (2022). Emerging enabling technologies for industry 4.0 and beyond. Information Systems Frontiers, 1-11.
- Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54-70.
- Soori, M., Dastres, R., Arezoo, B., & Jough, F. K. G. (2024). Intelligent robotic systems in Industry 4.0: A review. Journal of Advanced Manufacturing Science and Technology, 2024007-0.
- Syed, R., Suriadi, S., Adams, M., Bandara, W., Leemans, S. J., Ouyang, C., … & Reijers, H. A. (2020). Robotic process automation: contemporary themes and challenges. Computers in Industry, 115, 103162.
- Tantawi, K. H., Sokolov, A., & Tantawi, O. (2019, December). Advances in industrial robotics: From industry 3.0 automation to industry 4.0 collaboration. In 2019 4th Technology Innovation Management and Engineering Science International Conference (TIMES-iCON) (pp. 1-4). IEEE.
- Teng, S. Y., Touš, M., Leong, W. D., How, B. S., Lam, H. L., & Máša, V. (2021). Recent advances on industrial data-driven energy savings: Digital twins and infrastructures. Renewable and Sustainable Energy Reviews, 135, 110208.
- Tian, Y., Chen, C., Sagoe-Crentsil, K., Zhang, J., & Duan, W. (2022). Intelligent robotic systems for structural health monitoring: Applications and future trends. Automation in construction, 139, 104273.
- Tidd, J., & Bessant, J. R. (2020). Managing innovation: integrating technological, market and organizational change. John Wiley & Sons.
- Van der Aalst, W. M., Bichler, M., & Heinzl, A. (2018). Robotic process automation. Business & information systems engineering, 60, 269-272.
- Villani, V., Pini, F., Leali, F., & Secchi, C. (2018). Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics, 55, 248-266.
- Vojić, S. (2020). Applications of collaborative industrial robots. Machines. Technologies. Materials., 14(3), 96-99.
- Walch, K. (2019, December 15). You’ve Heard Of Robots; What Are Cobots. Forbes. https://www.forbes.com/sites/cognitiveworld/2019/12/15/youve-heard-of-robots-what-arecobots/
- Willcocks, L., Lacity, M., & Craig, A. (2017). Robotic Process Automation: Strategic Transformation Lever for Global Business Services? Journal of Information Technology Teaching Cases, 7(1), 17-28.
- Wolniak, R., Saniuk, S., Grabowska, S., & Gajdzik, B. (2020). Identification of energy efficiency trends in the context of the development of industry 4.0 using the Polish steel sector as an example. Energies, 13(11), 2867.
- Yavuz, O., Uner, M. M., Okumus, F., & Karatepe, O. M. (2023). Industry 4.0 technologies, sustainable operations practices and their impacts on sustainable performance. Journal of Cleaner Production, 387, 135951.
- Yi-Wei, M., Danping, L., Shiang-Jiun, C., Hsiu-Yuan, C., & Jiann-Liang, C. (2019). System Design and Development for Robotic Process Automation. Proceedings – 4th IEEE International Conference on Smart Cloud, SmartCloud 2019 and 3rd International Symposium on Reinforcement Learning, ISRL, (pp. 187–189). doi:10.1109/Smart-Cloud.2019.00038