Abstract :
A sophisticated software solution designed to enhance bioremediation processes in hydrocarbon-contaminated environments. This Advanced Bioremediation Optimization Software combines complex algorithms, real-time sensor data integration, and a user-friendly interface to deliver customized solutions for environmental restoration projects. The software utilizes predictive modeling to forecast remediation outcomes, optimizes treatment strategies based on ongoing data analysis, evaluates microbial communities through metagenomic sequencing data, and generates evidence-based recommendations to improve bioremediation efficiency. This tool represents a significant advancement in environmental restoration technology, offering practitioners a means to enhance the efficacy and cost-effectiveness of bioremediation projects. It also provides detailed economic projections to support informed decision-making by stakeholders, making it a valuable asset in the field of environmental remediation.
Keywords :
Bioremediation Optimization, Environmental Remediation Software, Hydrocarbon Contamination, Microbial Consortia, Predictive modelingReferences :
- Bassazin, A. M., Assefa Aragaw, T., & Birlie Genet, M. (2024). Bioremediation of petroleum hydrocarbon contaminated soil: A review on principles, degradation mechanisms, and advancements. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2024.1354422
- Thakur, D. Y., Singh, V., Sharma, P., & Singh, S. (2024). Deciphering microbe-driven remediation of environmental pollutants: An omics perspective. https://doi.org/10.1016/b978-0-443-21781-4.00002-5
- Rajkumari, J., Bhuyan, B., Das, N., & Pandey, P. (2019). Environmental applications of microbial extremophiles in the degradation of petroleum hydrocarbons in extreme environments. https://doi.org/10.1007/S42398-019-00065-1
- Pandey, P., Pathak, H., & Dave, S. (2016). Microbial Ecology of Hydrocarbon Degradation in the Soil: A Review. Research Journal of Environmental Toxicology. https://doi.org/10.3923/RJET.2016.1.15
- Li, M., Gao, Y., Qian, W.-J., Shi, L., Liu, Y., Nelson, W. C., … Liu, C. (2017). Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes. Environmental Microbiology Reports. https://doi.org/10.1111/1758-2229.12558
- (2022). Microbial Bioremediation of Petroleum Hydrocarbons in Moderate to Extreme Environments and Application of “Omics” Techniques to Evaluate Bioremediation Approaches and Efficiency. https://doi.org/10.1201/9780429341106-9
- Hasan, I. F., & AI-Jawhari. (2018). Role of Filamentous Fungi to Remove Petroleum Hydrocarbons from the Environment. https://doi.org/10.1007/978-981-13-1840-5_23
- Adeleye, A. O., Nkereuwem, M. E., Omokhudu, G. I., Amoo, A. O., Shiaka, G. P., & Yerima, M. B. (2018). Effect of microorganisms in the bioremediation of spent engine oil and petroleum related environmental pollution. Journal of Applied Sciences and Environmental Management. https://doi.org/10.4314/JASEM.V22I2.1
- Paniagua-Michel, J., & Fathepure, B. Z. (2018). Microbial Consortia and Biodegradation of Petroleum Hydrocarbons in Marine Environments. https://doi.org/10.1007/978-981-13-1840-5_1
- Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Microbial Degradation of Hydrocarbons in the Environment: An Overview. https://doi.org/10.1007/978-981-13-1840-5_15
- Pal, S., Roy, A., & Kazy, S. K. (2019). Exploring Microbial Diversity and Function in Petroleum Hydrocarbon Associated Environments Through Omics Approaches. https://doi.org/10.1016/B978-0-12-814849-5.00011-3
- Rasheed, M. A., Lakshmi, M., Kalpana, M. S., Dayal, A. M., & Patil, D. J. (2013). The microbial activity in development of hydrocarbon microseepage: An indicator for oil and gas exploration. Geosciences Journal. https://doi.org/10.1007/S12303-013-0026-Y
- Leahy, J. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiological Research. https://doi.org/10.1128/MR.54.3.305-315.1990
- Borah, D. (2018). Microbial Bioremediation of Petroleum Hydrocarbon: An Overview. https://doi.org/10.1007/978-981-13-1840-5_13
- Mahjoubi, M., Cappello, S., Souissi, Y., Jaouani, A., & Cherif, A. (2018). Microbial Bioremediation of Petroleum Hydrocarbon–Contaminated Marine Environments. https://doi.org/10.5772/INTECHOPEN.72207
- Padmanabhan, P., & Shanker, R. (2004). Strategies for targeting marker bacterial oxygenases involved in transformation of hydrocarbons in contaminated soil. International Journal of Environmental Studies. https://doi.org/10.1080/0020723042000211240
- Mandalaywala, H., & Trivedi, R. (2016). Effective Microbial Consortium of Bacteria Isolated from Hydrocarbon Polluted Soils of Gujarat, India. https://doi.org/10.15226/2475-4714/1/1/00106
- Chandra, D., General, T., Nisha, & Chandra, S. (2019). Microorganisms: An asset for decontamination of soil. https://doi.org/10.1016/B978-0-12-818307-6.00017-2
- Li, J., Huang, Q.-A., Cai, X., Zhao, X., Luo, C., & Zhang, G. (2024). Metabolic Characterization and Geochemical Drivers of Active Hydrocarbon‐Degrading Microorganisms. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2024jg008104
- Бабынин, Э. В., & Дегтярева, И. А. (2021). Возможности использования информационных ресурсов в биоремедиации. https://doi.org/10.21285/2227-2925-2021-11-3-372-383
- Ogbonna, D. N., Douglas, S. I., & Awari, V. G. (2020). Characterization of Hydrocarbon Utilizing Bacteria and Fungi Associated with Crude Oil Contaminated Soil. Microbiology Research Journal International. https://doi.org/10.9734/MRJI/2020/V30I530221
- Pramanik, K., Karmakar, A., Gogoi, N., Hoque, R. R., Mandal, N. C., & Balachandran, S. (2023). Microbes and microbial strategies in carcinogenic polycyclic aromatic hydrocarbons remediation: A systematic review. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-31140-0
- Smith, R. J., Jeffries, T. C., Adetutu, E. M., Fairweather, P. G., & Mitchell, J. G. (2013). Determining the Metabolic Footprints of Hydrocarbon Degradation Using Multivariate Analysis. PLOS ONE. https://doi.org/10.1371/JOURNAL.PONE.0081910
- (2022). Functional Diversity of Microbial Communities in Hydrocarbon-Polluted Ecosystems. https://doi.org/10.1201/9781003277354-5
- Premnath, N., Mohanrasu, K., Guru Raj Rao, R., Dinesh, G. H., Siva Prakash, G., Ananthi, V., … Arun, A. (2021). A crucial review on polycyclic aromatic Hydrocarbons – Environmental occurrence and strategies for microbial degradation. Chemosphere. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130608
- Kaushik, S., Alatawi, A., Djiwanti, S. R., Pande, A., Skotti, E., & Soni, V. (2021). Potential of Extremophiles for Bioremediation. https://doi.org/10.1007/978-981-15-7447-4_12
- Khatoon, K., Anas, M., Siddiqui, Z., & Malik, A. (2021). Role of Soil Microbial Flora in Remediation of Hydrocarbon Stressed Soils. https://doi.org/10.1007/978-981-33-4508-9_16
- Fenibo, E. O., Selvarajan, R., Abia, A. L. K., & Matambo, T. (2023). Medium-chain alkane biodegradation and its link to some unifying attributes of alkB genes diversity. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2023.162951
- Kostka, J. E., Teske, A. P., Joye, S. B., & Head, I. M. (2014). The metabolic pathways and environmental controls of hydrocarbon biodegradation in marine ecosystems. Frontiers in Microbiology. https://doi.org/10.3389/FMICB.2014.00471
- , D., O., & Tomilayo, R. B. (2023). Ecological Implications Of Bacterial Degradation Of Alkanes In Petroleum-Contaminated Environments: A Review Of Microbial Community Dynamics And Functional Interactions. Global Journal of Pure and Applied Sciences. https://doi.org/10.4314/gjpas.v29i2.4
- Nie, Y., Chi, C.-Q., Fang, H., Liang, J.-L., Lu, S., Lai, G., … Wu, X.-L. (2015). Diverse alkane hydroxylase genes in microorganisms and environments. Scientific Reports. https://doi.org/10.1038/SREP04968
- Tripathi, V., Gaur, V. K., Thakur, R., Patel, D. K., & Manickam, N. (2023). Assessing the half-life and degradation kinetics of aliphatic and aromatic hydrocarbons by bacteria isolated from crude oil contaminated soil. Chemosphere. https://doi.org/10.1016/j.chemosphere.2023.139264
- Wang, M., Ding, M., & Yuan, Y.-J. (2023). Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering. https://doi.org/10.3390/bioengineering10030347
- Pandolfo, E., Barra Caracciolo, A., & Rolando, L. (2023). Recent Advances in Bacterial Degradation of Hydrocarbons. Water. https://doi.org/10.3390/w15020375
- Costa, C., dos Santos, A. L., & Vega, M. A. (2022). Kinetics of Arab Light Crude Oil Degradation by Pseudomonas and Bacillus Strains. Water. https://doi.org/10.3390/w14233802
- Tirmizhi, M., Faggo, A. A., & Gulumbe, B. H. (2022). Species of Pseudomonas and Bacillus Isolated from Refined Oil-contaminated Soil Showed the Potential to Efficiently Degrade Diesel. Journal of Biochemistry, Microbiology and Biotechnology. https://doi.org/10.54987/jobimb.v10i1.718
- Ntroumpogianni, G. C., Giannoutsou, E., Karagouni, A. D., & Savvides, A. L. (2022). Bacterial Isolates from Greek Sites and Their Efficacy in Degrading Petroleum. Sustainability. https://doi.org/10.3390/su14159562
- Ghorbannezhad, H., Moghimi, H., & Dastgheib, S. M. M. (2022). Biodegradation of high molecular weight hydrocarbons under saline condition by halotolerant Bacillus subtilis and its mixed cultures with Pseudomonas species. Dental science reports. doi: 1038/s41598-022-17001-9
- Yerushalmi, L., Manuel, M. F., & Guiot, S. R. (1999). Biodegradation of gasoline and BTEX in a microaerophilic biobarrier. Biodegradation, 10(5), 341-352. doi:
- Shankar, S., Kansrajh, C., Dinesh, M. G., Satyan, R. S., Kiruthika, S., & Tharanipriya, A. (2014). Application of indigenous microbial consortia in bioremediation of oil-contaminated soils. International Journal of Environmental Science and Technology, 11(2), 367-376. doi: 1007/s13762-013-0366-1
- Li, X., Yi, S., Cundy, A. B., & Chen, W. (2022). Sustainable decision-making for contaminated site risk management: A decision tree model using machine learning algorithms. Journal of Cleaner Production. doi: 1016/j.jclepro.2022.133612
- Madison, A. S., Sorsby, S., Wang, Y., & Key, T. A. (2023). Increasing in situ bioremediation effectiveness through field-scale application of molecular biological tools. Frontiers in Microbiology. doi: 3389/fmicb.2022.1005871
- Rezaei, Z., & Moghimi, H. (2024). Fungal-bacterial consortia: A promising strategy for the removal of petroleum hydrocarbons. Ecotoxicology and Environmental Safety. doi: 1016/j.ecoenv.2024.116543
- Sama, D. K., Agbor, D. T., Pangilinan, P. J. M., Sunjo, T. E., & Sama-Lang, P. (2023). Cutting Edge Use of Microbial Consortia for Bioremediation of Contaminated Soil. Agricultural Science. doi: 22620/agrisci.2023.39.001
- Panigrahi, S., Saranya, E., & Toleti, S. R. (2024). Advanced Molecular Tools in Microbial Community Profiling in the Context of Bioremediation Applications. doi: 1016/b978-0-443-13320-6.00009-3
- Alidoosti, F., Giyahchi, M., Moien, S., & Moghimi, H. (2024). Unlocking the potential of soil microbial communities for bioremediation of emerging organic contaminants: omics-based approaches. Microbial Cell Factories. doi: 1186/s12934-024-02485-z
- (2023). Integration of Pathway Analysis as a Powerful Tool for Microbial Remediation of Pollutants. doi: 1002/9781119852131.ch21