Abstract :
Currently, gastrointestinal diseases claim the lives of up to two million people worldwide. GI disease treatment can be challenging, time-consuming, and expensive. One of the most recent advancements in medical imaging is the use of video endoscopy to diagnose gastrointestinal illnesses such stomach ulcers, bleeding, and polyps. Doctors require a lot of time to review all the images produced by medical video endoscopy since there are so many of them. This makes manual diagnosis difficult and has encouraged research into computer-aided approaches to diagnose all of the generated images quickly and accurately. The innovative aspect of the suggested methodology is the creation of a system for the diagnosis of digestive disorders. Machine learning techniques have the potential to significantly lower the cost of examination procedures while increasing the accuracy and speed of diagnosis. This paper describes a method for classifying GI illnesses using machine learning techniques.
Keywords :
Artificial Intelligent, Classification, Gastrointestinal diseases, Machine learningReferences :
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394–424.
- Khan, M. A., Sharif, M., Akram, T., Yasmin, M., & Nayak, R. S. (2019). Stomach deformities recognition using rank-based deep features selection. Journal of Medical Systems.
- Billah,M., Waheed,S and Rahman,M.M. (2017). An Automatic Gastrointestinal Polyp Detection System in Video Endoscopy Using Fusion of Color Wavelet and Convolutional Neural Network Features. International Journal of Biomedical Imaging Volume 2017, P. 9.
- Itoh, T., Kawahira, H., Nakashima, H. and Yata, N. “Deep learning analyzes Helicobacter pylori infection by upper gastrointestinal endoscopy images,” Endosc. Int. Open, vol. 6, no. 2, pp. E139_E144, 2018.
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin (2020) 70(1):7–30.
- Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet (2016) 388(10060):2654–64.
- Sergio Coda, An Investigation of the Diagnostic Potential of AutofluorescenceLifetime Spectroscopy and Imaging for Label-Free Contrast of Disease. PhDthesis, Thesis submitted for the award of Doctor of Philosophy (PhD) ImperialCollege of Science, Technology and Medicine, 2014.
- Ghosh, S.A. Fattah, C. Shahnaz, A.K. Kundu, M.N. Rizve, Block basedhistogram feature extraction method for bleeding detection in wirelesscapsule endoscopy, IEEE Region 10 Conference TENCON. IEEE (2015) 1–4.
- Shuai Wang, Yang Cong, Jun Cao, Yunsheng Yang, Yandong Tang, Huaici Zhao,Haibin Yu, Scalable gastroscopic video summarization via similar-inhibitiondictionary selection, Artif. Intel. Med. 66 (2016) 1–13.
- Horie Y, Yoshio T, Aoyama K et al. The diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest. Endosc. 2018 .
- Lai, K., Bo, L., Ren, X., & Fox, D. (2011). A largescale hierarchical multi-view RGB-D object dataset. In Proceedings – IEEE International Conference on Robotics and Automation (pp. 1817–1824).
- Fuller, D., Buote, R. and Stanley, K. (2021). A glossary for big data in population and public health: discussion and commentary on terminology and research methods | Journal of Epidemiology & Community Health. Accessed December 18, 2021.
- Liu, C. Wang, Y. Hu, Z. Zeng, J. Bai, and G. Liao, “Transfer learning with convolutional neural network for early gastric cancer classification on magnifying narrow-band imaging images,” in Proc. Int. Conf. Image Process. (ICIP), Athens, Greece, Oct. 2018, pp. 1388_1392.
- Doi K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Computerized Medical Imaging and Graphics. 2017;31(4):198-211
- [15] Li Q, Nishikawa RM, editors. Computer-Aided Detection and Diagnosis in Medical Imaging. Taylor & Francis, CRC Press, New York; 2015
- [16] Chen C-M, Chen, Yi-Hong Chou, Norio Tagawa, and Younghae Do. Computer-aided detection and diagnosis in medical imaging. Computational and Mathematical Methods in Medicine. vol. 2013, Article ID 790608, 2 pages, 2013.
- Giger ML, et al. Computer-aided diagnosis in mammography. Handbook of Medical Imaging. 2nd ed. SPIE Digital Library, Europe, 2000. 915-1004
- Ahn, A. Kumar, J. Kim, C. Li, D. Feng, and M. Fulham, “Xray image classification using domain transferred convolutional neural networks and local sparse spatial pyramid,” in roceedings of 2016 IEEE International Symposium on Biomedical Imaging (ISBI), pp. 855–858, IEEE, Prague, Czech Republic, April 2016.
- Hwang, J.H.; Jamidar, P.; Baig, K.R.K.K.; Leung, F.W.; Lightdale, J.R.; Maranki, J.L.; Okolo III, P.I.; Swanstrom, L.L.; Chak, A. GIE Editorial Board Top 10 Topics: Advances in GI Endoscopy in 2019. Gastrointest. Endosc. 2020, 92, 241–251.
- Du, W., Rao, N., Liu, D., Jiang H., Luo, C., Li, Z., Gan, T.,and Zeng, B. (2019). Review on the Applications of Deep Learning in the Analysis of Gastrointestinal Endoscopy Images. Digital Object Identifier, IEEE, 7: 142053.
- Georgakopoulos, S.V.; Iakovidis, D.; Vasilakakis, M.; Plagianakos, V.P.; Koulaouzidis, A. Weakly-Supervised Convolutional Learning for Detection of Inflammatory Gastrointestinal Lesions. In Proceedings of the IEEE International Conference on Imaging Systems and Techniques (IST), Chania, Crete Island, Greece, 4–6 October 2016; pp. 510–514.
- Jia, X.; Meng, M. A Deep Convolutional Neural Network for Bleeding Detection in Wireless Capsule Endoscopy Images. In Proceedings of the IEEE 38th Annual International Conference on the Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 639–642.
- Wimmer, G.; Hegenbart, S.; Vécsei, A.; Uhl, A. Convolutional Neural Network Architectures for the Automated Diagnosis of Celiac Disease. In Proceedings of the InternationalWorkshop on Computer-Assisted and Robotic Endoscopy, Munich, Germany, 5 October 2016; pp. 104–113.
- Suman, F. A. B. Hussin, A. S. Malik, K. Pogorelc, M. Riegler, S. H. Ho, I. Hilmi, and K. L. Goh, “Detection and classification of bleeding region in wce images using color feature,” in Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing –CBMI, 17 , 2017, pp. 16.
- Bchir, O.; Ismail, M.; AL_Aseem, N. Empirical Comparison of Visual Descriptors for Ulcer Recognition in Wireless Capsule Endoscopy Video. In Proceedings of the 4th International Conference on Image Processing and Pattern Recognition (IPPR 2018), Copenhagen, Denmark, 28–29 April 2018.
- Kanesaka T., Lee T.-C., Uedo N., Lin K.P., Chen H.Z., Lee J.Y., Wang H.-P., Chang H.T. Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging. Gastrointest Endosc. 2018;87:1339–1344.
- Takiyama, H., Ozawa, T., Ishihara, S., Fujishiro, M., Shichijo, S., Nomura, S., Miura, M., & Tada, T. (2018). Automatic anatomical classification of esophagogastrodenoscopy images using deep convolutional neural networks. Scientific Reports, 8(1), 1–8.
- Xing, , Jia, X., and Meng,M. (2018). Bleeding Detection in Wireless Capsule Endoscopy Image Video Using Superpixel-Color Histogram and a Subspace KNN Classifier. 978-1-5386-3646.
- Sharif, M., Attique Khan, M., Rashid, M., Yasmin, M., Afza, F., & Tanik, U. J. (2019). Deep CNN and geometric features-based gastrointestinal tract diseases detection and classification from wireless capsule endoscopy images. Journal of Experimental and Theoretical Artificial Intelligence, 1–23.
- Souaidi, M., Ait, A., & El Ansari, M. (2019). Multi-scale completed local binary patterns for ulcer detection in wireless capsule endoscopy images. Multimedia Tools and Applications, 78(10), 13091–13108.
- El Hajjar, A. and Rey, J. (2020). Artificial intelligence in gastrointestinal endoscopy: general overview. Chinese Medical Journal;133(3):326.
- Borgli, H., Vajira Thambawita, V., Smedsrud, P. H., Hicks, S., Jha, , Sigrun L. Eskeland,S. L., Randel, K. R., Pogorelov, K., Lux, M., Nguyen,D. T. D., Johansen, D., Griwodz, C., Stensland, H. K., Garcia-Ceja, E., Schmidt, P. T., Hammer, H. L., Riegler, M. A., Halvorsen, P., Thomas de Lange. (2020). HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Scientific Data, 7(1), 1–14.
- Bi Q, Goodman KE, Kaminsky J, Lessler J. What is Machine Learning? Am J Epidemiol 2019; 188: 2222-2239 .
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436-444.
- Ahmad OF, Soares AS, Mazomenos E, Brandao P, Vega R, Seward E, Stoyanov D, Chand M, Lovat LB. Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions. Lancet Gastroenterol Hepatol 2019; 4: 71-80
- Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G … Zhao S (2019) Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 18(6):463–
- Schoepf UJ, Zwerner PL, Savino G, Herzog C, Kerl JM, Costello P (2007) Coronary CT angiography. Radiology 244(1):48–
- Bhushan M, Duarte JÁG, Samant P, Kumar A, Negi A (2021) Classifying and resolving software product line redundancies using an ontological first-order logic rule based method. Expert Syst Appl 168:114167.
- Negi A, Kaur K (2017) Method to resolve software product line errors. In: International conference on information, communication and computing technology. Springer, Singapore, pp 258–268 .
- Wang S, Summers RM. Machine learning and radiology. Med Image Anal 2012;16:933–51.
- Ker, L. Wang, J. Rao and T. Lim, “Deep Learning Application in Medical Image Analysis,” in IEEE Access, vol. 6, pp. 9375-9389, 2018.
- Futoma, J., Simons, M., Panch, T., Doshi-Velez, F., Celi, L.A. (2020) The myth of generalisability in clinical research and machine learning in health care . Lancet Digital Health 2020; 2: e489–92
- Davenport and R. Kalakota, “The potential for artificial intelligence in healthcare,” Future Healthcare Journal, vol. 6, no. 2, pp. 94–98, 2019.
- Cielen, A. D. Meysman, and M. Ali, Introducing Data Science. Introducing Data Science, Manning Publications, 2016.
- M. Bishop, Pattern Recognition and Machine Learning. Information Science and Statistics, Springer, 2006.
- Jiang T, Gradus JL, Rosellini AJ. Supervised machine learning: a brief primer. Behav Ther 2020;51(5):675–87.
- Alanazi , A . (2022 ). Using machine learning for healthcare challenges and opportunities. Informatics in Medicine Unlocked 30:100924.
- Kendale S, Kulkarni P, Rosenberg AD, Wang J. Supervised machine-learning predictive analytics for prediction of postinduction hypotension. Anesthesiology 2018;129(4):675–88.
- Probst P, Boulesteix AL, Bischl B. Tunability: importance of hyperparameters of machine learning algorithms. :32.
- Unsupervised machine learning. DataRobot AI cloud. Accessed December 17, 2021.
- Osi´nski B, Budek K. What is reinforcement learning? The complete guide. deepsense.ai. Published July 5, 2018. Accessed December 17, 2021.
- Riachi E, Mamdani M, Fralick M, Rudzicz F. Challenges for Reinforcement Learning in Healthcare. arXiv:210305612 [cs]. Published online March 9, 2021. Accessed December 17, 2021.
- Bui, N., Cesana, M., Hosseini, S. A., Liao, Q., Malanchini, I., and Widmer, J. (2017). “A survey of anticipatory mobile networking: Context-based classification, prediction methodologies, and optimization techniques”. IEEE Communications Surveys & Tutorials, 19(3), 1790-1821.
- Gnanambal, D. Thangaraj, Meenatchi V T, and D. Gayathri, “Classification Algorithms with Attribute Selection: an evaluation study using WEKA,” Int. J. Adv. Netw. Appl., vol. 09, no. 06, pp. 3640–3644, 2018.
- K. Jain, H. Dhawan, and B. Sowmiya, “DDoS Detection Using Machine Learning Ensemble,” Turkish J. Comput. Math. Educ., vol. 12, no. 12, pp. 1647–1655, 2021.
- Yassin B., Mohamed C. and Yassine A. (2021). A Nonlinear Support Vector Machine Analysis Using Kernel Functions for Nature and Medicine.
- Kausar, B. Belhaouari Samir, A. Abdullah, I. Ahmad, and M. Hussain, “A review of classification approaches using support vector machine in intrusion detection,” Commun. Comput. Inf. Sci., vol. 253 CCIS, no. PART 3, pp. 24–34, 2011
- Oommen,T., Misra, D., Twarakavi, N. K. C., Prakash, A., Sahoo, B. and Bandopadhyay, S. “An objective analysis of support vector machine based classification for remote sensing,” Math. Geosci., vol. 40, no. 4, pp. 409–424, 2008 .
- Jader, R.F., Abd, M.H.M. and Jumaa, I.H., 2022. Signal Modulation Recognition System Based on Different Signal Noise Rate Using Artificial Intelligent Approach. Journal of Studies in Science and Engineering, 2(4), pp.37-49.
- Tuysuzoglu, G., Birant, D. and Pala, A. (2019) ‘Majority voting based multi-task clustering of air quality monitoring network in Turkey’, Applied Sciences (Switzerland), 9(8), pp. 1–21 .
- Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel based Learning Methods. Cambridge University Press, 2000.
- Altman, N. S. “An introduction to kernel and nearest-neighbor nonparametric regression,” Stat., vol. 46, no. 3, pp. 175–185, 1992 .
- Zhang, Y., Cao, G., Wang, B. and Li, X. “A novel ensemble method for k-nearest neighbor,” Pattern , vol. 85, pp. 13–25, Jan. 2019.
- Marcot, B. G. and Penman, T. D. “Advances in Bayesian network modelling: Integration of modeling technologies,” Environmental Modelling and Software, vol. 111. Elsevier Ltd, pp. 386–393, Jan. 01, 2019 .
- Drury,B., Valverde-Rebaza, J., Moura, M. F. and de Andrade Lopes, A. “A survey of the applications of Bayesian networks in agriculture,” Appl. Artif. Intell., vol. 65, pp. 29–42, Oct. 2017 .
- Du,J., Zhai, C. and Wan, Y. “Radial basis probabilistic neural networks committee for palmprint recognition,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2007, vol. 4492 LNCS, no. PART 2, pp. 819–824 .
- “Neural Networks for Pattern Recognition Guide books.” (accessed Dec. 29, 2020).
- Paliwoda, “Decision Trees Learning System,” in Intelligent Information Systems, Physica- Verlag HD, 2002, pp. 77–90.
- Aytaç, M. A. Aydın, and A. H. Zaim, “Detection DDOS attacks using machine learning methods,” Electrica, vol. 20, no. 2, pp. 159–167, 2020 .
- Reis, I., Baron, D., & Shahaf, S. (2018). Probabilistic Random Forest: A Machine Learning Algorithm for Noisy Data Sets. The Astronomical Journal, 157(1), 16.
- Ozgode Yigin, B., Algin, O., & Saygili, G. (2020). Comparison of morphometric parameters in prediction of hydrocephalus using random forests. Computers in Biology and Medicine, 116, 103547.
- Shouman, M., Turner, T. and Stocker, R., 2012. Applying k-Nearest Neighbour in Diagnosing Heart Disease Patients. International Journal of Information and Education Technology, pp.220-223.
- Introduction To K Nearest Neighbour Classification And Condensed Nearest Neighbour Data Reduction. [ebook] University of Leicester, p.1. Available at: https://staff.fmi.uvt.ro/~daniela.zaharie/dm2018/ro/TemeProiecte/Biblio/kNN/CondensedNearestNeigh-bor.pdf>].
- Budianto, A., Ariyuana, R., & Maryono, D. 2018. Perbandingan K-Nearest Neighbor (Knn) Dan Support Vector Machine (Svm) Dalam Pengenalan Karakter Plat Kendaraan Bermotor [Comparison Of K-Nearest Neighbor (Knn) And Support Vector Machine (Svm) In Introduction To Plat Vehicle Characters]. Jurnal Ilmiah Pendidikan Teknik dan Kejuruan, 11(1): 27-35.
- Anggoro, D. A., Rahmatullah, P. I. 2020. The Implementation of Subspace Outlier Detection in K-Nearest Neighbors to Improve Accuracy in Bank Marketing Data. International Journal of Emerging Trends in Engineering Research, 8(2).
- Choudhary R, Gianey HK. Comprehensive review on supervised machine learning algorithms. In: 2017 international conference on machine learning and data science. MLDS); 2017. p. 37–43.
- Harrison O. Machine learning basics with the K-nearest neighbors algorithm. Medium., 16, 2021.