Detection and Classification of Gastrointestinal Diseases by using Machine Learning: A Review
Currently, gastrointestinal diseases claim the lives of up to two million people worldwide. GI disease treatment can be challenging, time-consuming, and expensive. One of the most recent advancements in medical imaging is the use of video endoscopy to diagnose gastrointestinal illnesses such stomach ulcers, bleeding, and polyps. Doctors require a lot of time to review all the images produced by medical video endoscopy since there are so many of them. This makes manual diagnosis difficult and has encouraged research into computer-aided approaches to diagnose all of the generated images quickly and accurately. The innovative aspect of the suggested methodology is the creation of a system for the diagnosis of digestive disorders. Machine learning techniques have the potential to significantly lower the cost of examination procedures while increasing the accuracy and speed of diagnosis. This paper describes a method for classifying GI illnesses using machine learning techniques.