Abstract :
Background: Acinetobacter baumannii is a microbe that is fast becoming a danger or threat to public health. Studies have described a rapidly changing epidemiology of the opportunistic pathogen and credited it with increasing importance in the community and healthcare-associated infections. The threat of A. baumannii is considered to be of public health significance due to its recent association with increased length of hospital admission, increased mortality, and morbidity, particularly among patients in the intensive care units. The objective of this review is to highlight the characteristics of this emergent pathogen to better understand and curtail it.
Methodology: This review comprises a literature search of chapters in books and journals which gives an insight into the peculiarities of A. baumannii. It centers on evolving pathogenesis, epidemiology, antimicrobial susceptibility, laboratory investigations, the molecular basis of resistance, and management of infections caused by the pathogen.
Conclusion: Due to the public health significance of the pathogen, there is an urgent call for increased vigilance and improved knowledge/research-driven approaches to the diagnosis and management of A. baumannii infections.
Keywords :
Acinetobacter baumannii, Epidemiology, healthcare-associated infections, Public HealthReferences :
- Bashir, A., Adamu, A.A., Abdurrazak, M.I., Hamisu, U.T., Faruk, S. and Ezera, A. Molecular characterization of Acinetobacter baumannii from patients with prolonged hospital stays in three tertiary hospitals of Kano Metropolis, Northwestern Nigeria. Afr. J. Microbiol. Res. 2019; 13(27): 510–517.
- Peleg, A.Y., Harald, S. and David, L.P. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin. Microbial. Rev. 2008; 21(3): 538–582.
- Muhammad, A., Iqbal, A.A. and Shafiq, U.R. Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infection and Drug Resistance. 2018; 11: 1249–1260.
- Antunes, L.C., Visca, P. and Towner, K.J. Acinetobacter baumannii: evolution of a global pathogen. Pathog. Dis. 2014; 71(3): 292–301. doi: 10.1111/2049-632X.12125. PMID: 24376225.
- Japoni, S., Japoni, A., Farshad, S. and Ahya, A. “Association between the existence of integrons and multidrug resistance in Acinetobacter isolated from patients in southern Iran”. Pol. J. Microbiol. 2011; 60(2): 163–168.
- Boucher, H.W., Talbot, G.H., Bradley, J.S., Edwards, J.E., Gilbert, D., Rice, L.B., Scheld, M., Spellberg, B. and Bartlett, J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009; 48(1): 1– doi: 10.1086/595011.
- De Rosa, F.G., Corcione, S., Pagani, N. and Di Perri, G. From ESKAPE to ESCAPE, From KPC to CCC. Clin. Infect. Dis. 2015; 60(8): 1289–
- Fournier, P.E. and Herve, R. The Epidemiology and Control of Acinetobacter baumannii in Health Care Facilities. Clin. Infec. Dis. 2006; 42: 692–699.
- Vincent, J.L., Rello, J., Marshall, J., Silva, E., Anzueto, A., Martin, C.D., Moreno, R., Lipman, J., Gomersall, C., Sakr, Y. and Reinhart, K. International study of the prevalence and outcomes of infection in Intensive Care Units. JAMA. 2009; 302: 2323–2329.
- Uwingabiye, J., Frikh, M., Lemnouer, A., Bssaibis, F., Belefquih, B., Maleb, A., Dahraousi, S., Belyamani, L., Bait, A., Haimeur, C., Louzi, L., Ibrahim, A. and Elouennass, M. Acinetobacter infections prevalence and frequency of the antibiotics resistance: Comparative study of Intensive Care Units versus other hospital units. Pan Afr. Med. J. 2016; 23: 191. doi: 10.11604/pamj.2016.23.191.7915.
- Ntusi, N.B., Badri, M., Khalfey, H., Whitelaw, A., Oliver, S., Piercy, J., Raine, R.I., Joubert, I. and Dheda, K. “ICU-Associated Acinetobacter baumannii Colonization/Infection in a High HIV Prevalence Resource-Poor Setting”. PLoS One. 2012; 7(12): e52452.
- Egwuenu, A., Obasanya, J., Okeke, I., Aboderin, O., Olayinka, A.T., Dooshima, K., Oguniyi, A., Mbadiwe, E., Omoniyei, L., Omotayo, H., Niyang, M., Abba, F., Kudla, F., Twg, A. and Ihekweazu, C. Antimicrobial use and resistance in Nigeria: situation analysis and recommendations. Pan Afr. Med. J. 2018; 8(2): 21. doi: 10.11604/pamj-cp.2018.8.2.701.
- Nwadike, V.U., Ojide, C.K. and Kalu, E.I. Multidrug-resistant Acinetobacter infection and their antimicrobial susceptibility pattern in a Nigerian tertiary hospital ICU. Afr. J. Infect. Dis. 2014; 8: 14–18.
- Mea, H.J., Yong, P.V.C. and Wong, E.H. An overview of Acinetobacter baumannii pathogenesis: Motility, adherence, and biofilm formation. Microbiol. Res. 2021; 247: 126722. doi: 10. 1016/j.micres.2021.126722. PMID: 33618061.
- Smith, M.G., Gianoulis, T.A., Pukatzki, S., Mekalanos, J.J., Ornston, L.N., Gerstein, M. and Synder, M. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 2007; 21: 601–614.
- Falagas, M.E. and Karveli, E.A. The changing global epidemiology of Acinetobacter baumannii infections: a development with major public health implications. Clin. Microbiol. Infect. 2007; 13: 117–119.
- Knapp, S., Wieland, C.W., Florquin, S., Pantophlet, S.A., Dijkshoorn, L., Tshimbalanga, N., Akira, S. and van der Poll, T. Differential roles of CD14 and Toll-like receptors 4 and 2 in murine Acinetobacter Am. J. Respir. Crit. Care Med. 2006; 173: 122–129.
- Erridge, C., Moncayo-Nieto, O.L., Morgan, R., Young, M. and Poxton, I.R. Acinetobacter baumannii lipopolysaccharides are potent stimulators of human monocyte activation via Toll-like receptor 4 signalling. Med. Microbiol. 2007; 56: 165–171.
- McConnell, M.J., Actis, L. and Pachon, J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol. Rev. 2013; 37: 130–155. doi: 10.1111/j.1574-6976.2012.00344.x
- Lee, C.R., Lee, J.H., Park, M., Park, K.S., Bae, K., Kim, Y.B., Cha, C.J., Jeong, B.C. and Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell. Infect. Microbiol. 2017; 7(55): 1–35. doi: 10.3389/fcimb.2017.00055.
- Bazyleu, A. and Kumar, A. Incubation temperature, osmolarity, and salicylate affect the expression of resistance-nodulation-division efflux pumps and outer membrane porins in Acinetobacter baumannii FEMS Microbiol. Lett. 2014; 357: 136–143. doi: 10.1111/1574-6968.12530.
- Smani, Y., Fabrega, A., Roca, I., Sanchez-Encinales, V., Vila, J. and Pachon, J. Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2014; 58: 1806–1808. doi: 10.1128/AAC.02101-13.
- Huang, W., Yao, Y., Wang, S., Xia, Y., Yang, X., Long, Q., Sun, W., Liu, C., Li, Y., Chu, X., Bai, H., Yao, Y. and Ma, Y. Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii. Sci. Rep. 2016; 6: 20724. doi: 10.1038/srep20724.
- Smani, Y., Dominguez-Herrera, J. and Pachon, J. Association of the outer membrane protein Omp33 with fitness and virulence of Acinetobacter baumannii. J. Infect. Dis. 2013; 208: 1561–1570. doi: 10.1093/infdis/jit386.
- Zahn, M., D’Agostino, T., Eren, E., Baslé, A., Ceccarelli, M. and van den Berg, B. Small-molecule transport by CarO, an abundant eight-stranded b-Barrel outer membrane protein from Acinetobacter baumannii. J. Mol. Biol. 2015; 427: 2329–2339. doi: 10.1016/j.jmb.2015.03.016.
- Zahn, M., Bhamidimarri, S.P., Baslé, A., Winterhalter, M. and van den Berg, B. Structural insights into outer membrane permeability of Acinetobacter baumannii. Structure. 2016; 24: 221–231. doi: 10.1016/j.str.2015.12.009.
- Uppalapati, S.R., Sett, A. and Pathania, R. The Outer Membrane Proteins OmpA, CarO, and OprD of Acinetobacter baumannii confer a Two-Pronged Defense in Facilitating Its Success as a Potent Human Pathogen. Front. Microbiol. 2020; 11: 589234. doi: 10.3389/fmicb.2020.589234.
- Geisinger, E. and Isberg, R.R. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS Pathog. 2015; 11: e1004691. doi: 10.1371/journal.ppat.1004691.
- Russo, T.A., Luke, N.R., Beanan, J.M., Olson, R., Sauberan, S.L., MacDonald, U., Schultz, L.W., Umland, T.C. and Campagnari, A.A. The K1 capsular polysaccharide of Acinetobacter baumannii strain 307-0294 is a major virulence factor. Infect. Immun. 2010; 78: 3993–4000. doi: 10.1128/IAI.00366-10.
- Lee, C.R., Lee, J.H., Jeong, B.C. and Lee, S.H. Lipid a biosynthesis of multidrug-resistant pathogens–a novel drug target. Curr. Pharm. Des. 2013b; 19: 6534–6550. doi: 10.2174/13816128113199990494.
- Flores-Diaz, M., Monturiol-Gross, L., Naylor, C., Alape-Giron, A. and Flieger, A. Bacterial sphingomyelinases and phospholipases as virulence factors. Microbiol. Mol. Biol. Rev. 2016; 80: 597–628. doi: 10.1128/MMBR. 00082-15.
- Jun, S.H., Lee, J.H., Kim, B.R., Kim, S.I., Park, T.I., Lee, J.C. and Lee, Y.C. Acinetobacter baumannii outer membrane vesicles elicit a potent innate immune response via membrane proteins. PLoS ONE. 2013; 8: e71751. doi: 10.1371/journal.pone.0071751.
- Rajamohan, G., Srinivasan, V.B. and Gebreyes, W.A. Biocide-tolerant multidrug-resistant Acinetobacter baumannii clinical strains are associated with higher biofilm formation. Hosp. Infect. 2009; 73: 287–289.
- World Health Organization (WHO) Global Strategy for Containment of Antimicrobial Resistance. Available online: https://apps.who.int/iris/bitstream/handle/10665/66860/WHO_CDS_CSR_DRS_2001.2.pdf?sequence=1&isAllowed=y
- Bonomo, R.A. and Szabo, D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Infect. Dis. 2006; 43: S49–S56.
- Maragakis, L.L. and Perl, T.M. Acinetobacter baumannii: Epidemiology, antimicrobial resistance, and treatment options. Infect. Dis. 2008; 46: 1254–1263.
- Chakravarty, B. Genetic mechanisms of antibiotic resistance and virulence in Acinetobacter baumannii: background, challenges and future prospects. Mol. Biol. Rep. 2020; 47(5): 4037– doi: 10.1007/s11033-020-05389-4. PMID: 32303957.
- Ramstead, A.G., Robison, A., Bebin, A., Jerome, M., Freedman, B., Lubick, K.J., Hedges, J.F. and Jutila, M.A. Roles of Toll-Like Receptor 2 (TLR2), TLR4, and MyD88 during Pulmonary Coxiella burnetii Infect Immun, 2016; 84(4): 940–949. doi:10.1128/iai.00898-15.
- Chen, W. Host Innate Immune Responses to Acinetobacter baumannii Front. Cell. Infect. Microbiol. 2020; 10: 486. doi: 10.3389/fcimb.2020.00486. PMID: 33042864.
- Garcia-Patino, M.G., Garcia-Contreras, R. and Licona-Limon, P. The Immune Response against Acinetobacter baumannii, an Emerging Pathogen in Nosocomial Infections. Front Immunol. 2017; 8: 441. doi:10.3389/fimmu.2017.00441.
- Man, S.M. and Kanneganti, T.D. Regulation of inflammasome activation. Rev. 2015; 265(1): 6–21. doi:10.1111/imr.12296.
- Harris, G., KuoLee, R., Xu, H.H. and Chen, W. Mouse models of Acinetobacter baumannii Curr. Prot. Microb. 2017; 46(1): 6G.3.1–6G.3.23.
- Bentancor, L., Camacho-Peiro, A., Bozkurt-Guzel, C., Pier, G. and Maira-Litran, T. Identification of Ata, a multifunctional trimeric autotransporter of Acinetobacter baumannii. J. Bacteriol. 2012; 194(15): 3950–3960.
- Skerniˇskyte, J., Krasauskas, R., P´echoux, C., Kulakauskas, S., Armalyt˙e, J. and Suˇziedelien˙e, E. Surface-related features and virulence among Acinetobacter baumannii clinical isolates belonging to international clones I and II. Front. Microbiol. 2019; 9: 3116. doi:10.3389/fmicb.2018.03116.
- Palmer, L., Green, E., Sheldon, J. and Skaar, E. Assessing Acinetobacter baumannii virulence and persistence in a murine model of lung infection. Methods Mol. Biol. 2019; 1946: 289–305.
- Joly-Guillou, M., Wolff, M., Pocidalo, J., Walker, F. and Carbon, C. Use of a new mouse model of Acinetobacter baumannii pneumonia to evaluate the post-antibiotic effect of imipenem. Antimicrob. Agents Chemother. 1997; 41(2): 345–351.
- de Breij, A., Eveillard, M., Dijkshoorn, L., van den Broek, P., Nibbering, P. and Joly-Guillou, M. Differences in Acinetobacter baumannii strains and host innate immune response determine morbidity and mortality in experimental pneumonia. PLoS One. 2012; 7(2): p. e30673.
- Anju, V., Siddhardha, B. and Dyavaiah, M. Animal models to understand Host–Pathogen interactions. Model Organisms for Microbial Pathogenesis. Biofilm Formation and Antimicrobial Drug Discovery. 2020; pp. 393–411.
- Pedersen, R.M., Grønnemose, R., Stærk, K., Asferg, C., Andersen, T.B., Kolmos, H., Moller-Jensen, J. and Andersen, T.E. A method for quantification of epithelium colonization capacity by pathogenic Bacteria. Front. Cell. Infect. Microbiol. 2018; 8(16): 1–15.
- Vijayakumar, S., Rajenderan, S., Laishram, S., Anandan, S., Balaji, V. and Biswas, I. Biofilm formation and motility depend on the nature of the Acinetobacter baumannii clinical isolates. Public Health. 2016; 4: 105. doi: 10.3389/fpubh.2016.00105. PMID: 27252939; PMCID: PMC4877508.
- Qiu, H., KuoLee, R., Harris, G., Van Rooijen, N., Patel, G. and Chen, W. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii PLoS One. 2012; 7(6): p. e40019.
- Lemos, E.V., de la Hoz, F.P., Einarson, T.R., McGhan, W.F., Quevedo, E., Castañeda, C., and Kawai, K. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: Systematic review and meta-analysis. Clin. Microbiol. Infect. 2014; 20: 416–423.
- Sunenshine, R.H., Wright, M.O., Maragakis, L.L., Harris, A.D., Song, X., Hebden, J., Cosgrove, S.E., Anderson, A., Carnell, J., Jernigan, D.B., et al. Multidrug-resistant Acinetobacter Infection Mortality Rate and Length of Hospitalization. Emerg. Infect. Dis. 2007; 13: 97–103.
- Kim, Y.J., Kim, S., Hong, K.W., Kim, Y.R., Park, Y.J., and Kang, M.W. Risk factors for mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia: Impact of appropriate antimicrobial therapy. J. Korean Med. Sci. 2012; 27: 471–
- Kulah, C., Aktas, E., Comert, F., Ozlu, N., Akyar, I. and Ankarali, H. Detecting imipenem resistance in Acinetobacter baumannii by automated systems (BD Phoenix, Microscan WalkAway, Vitek 2); high error rates with Microscan WalkAway. BMC Infect. Dis. 2009; 9(30): 1– doi: 10.1186/1471-2334-9-30.
- Camp, C. and Owatha, L.T. A Review of Acinetobacter baumannii as a Highly Successful Pathogen in Times of War. 2010; 41(11): 649–657.
- Ming-Feng, L. and Chung-Yu, L. Antimicrobial resistance in Acinetobacter baumannii from bench to bedside. World J. Clin. Cases. 2014; 2(12): 787–814.
- Wong, D., Nielsen, T.B., Bonomo, R.A., Pantapalangkoor, P., Luna, B. and Spellberg, B. Clinical and pathophysiological overview of Acinetobacter infections: A century of challenges. Clin. Microbiol. Rev. 2017; 30: 409–447.
- Neonakis, I.K., Spandidos, D. and Petinaki, E. Confronting multidrug-resistant Acinetobacter baumannii: a review. J. Antimicrob. Agents. 2011; 37(2): 102-109.
- Fishbain, J. and Peleg, A.Y. Treatment of Acinetobacter infections. Clin Infect Dis. 2010; 51(1): 79–
- Garnacho-Montero J., Dimopoulos, G., Poulakou, G., Akova, M., Cisneros, J.M. and De Waele, J. Task force on management and prevention of Acinetobacter baumannii infections in the ICU. Intensive Care Med. 2015; 41: 2057–2075. doi: 10.1007/s00134-015-4079-4.
- Talbot, G.H., Bradley, J., Edwards Jr., J.E., Gilbert, D., Scheld, M. and Bartlett, J.G. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin. Infect. Dis. 2006; 42: 657–668.
- Liang, W., Liu, X., Huang, J., Zhu, D., Li, J. and Zhang, J. Activities of colistin- and minocycline-based combinations against extensive drug-resistant Acinetobacter baumannii isolates from intensive care unit patients. BMC Infect. Dis. 2011; 11: 109.
- Chen, L., Kuo, S., Chang, K., Cheng, C. and Yu, P. Clinical antibiotic-resistant Acinetobacter baumannii strains with higher susceptibility to environmental phages than antibiotic-sensitive strains. Nature. 2017; 7: 1–10. doi: 10.1038/s41598-017-06688-w
- Batirel, A., Balkan, I.I., Karabay, O., Agalar, C., Akalin, S. and Alici, O. Comparison of colistin-carbapenem, colistin-sulbactam, and colistin plus other antibacterial agents for the treatment of extremely drug-resistant Acinetobacter baumannii bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 2014; 33: 1311–1322. doi: 10.1007/s10096-014-2070-6.
- Temocin, F., Erdinc, F.S., Tulek, N., Demirelli, M., Ertem, G., Kinikli, S. and Koksal, E. Synergistic effects of sulbactam in multi-drug-resistant Acinetobacter baumannii. Braz. J. Microbiol. 2015; 46: 1119–1124.
- Liu, X., Zhao, M., Chen, Y., Bian, X., Li, Y., Shi, J. and Zhang, J. Synergistic killing by meropenem and colistin combination of carbapenem-resistant Acinetobacter baumannii isolates from Chinese patients in an in vitro pharmacokinetic/pharmacodynamic model. Int. J. Antimicrob. Agents. 2016; 48: 559–563.
- Aydemir, H., Akduman, D., Piskin, N., Comert, F., Horuz, E., Terzi, A., Kokturk, F., Ornek, T. and Celebi, G. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol. Infect. 2013; 141: 1214–1222.
- Cirioni, O., Simonetti, O., Pierpaoli, E., Barucca, A., Ghiselli, R., Orlando, F., Pelloni, M., Trombettoni, M.M.C., Guerrieri, M. et al. Colistin enhances therapeutic efficacy of daptomycin or teicoplanin in a murine model of multiresistant Acinetobacter baumannii Diagn. Microbiol. Infect. Dis. 2016; 86. 392–398.
- Bowler, S.L., Spychala, C.N., McElheny, C.L., Mettus, R.T. and Doi, Y. In Vitro Activity of Fusidic Acid-Containing Combinations against Carbapenem-Resistant Acinetobacter baumannii. Clinical Strains. Antimicrob. Agents Chemother. 2016; 60: 5101.
- Hua, Y., Luo, T., Yang, Y., Dong, D., Wang, R., Wang, Y., Xu, M., Guo, X., Hu, F. and He, P. Phage Therapy as a Promising New Treatment for Lung Infection Caused by Carbapenem-Resistant Acinetobacter baumannii in Mice. Front. Microbiol. 2018; 8: 2659.
- Rodriguez-Rubio, L., Chang, W.L., Gutierrez, D., Lavigne, R., Martinez, B., Rodriguez, A., Govers, S.K. et al. ‘Artilysation’ of endolysin lambdaSa2lys strongly improves its enzymatic and antibacterial activity against Streptococci. Sci. Rep. 2016; 6: 35382. doi: 10.1038/srep35382.
- Light, I.J., Walton, R.L., Sutherland, J.M., Shinefield, H.R., Francisco, S. and Brackvogel, V. Use of bacterial interference to control a Staphylococcal nursery outbreak. Amer. J. Dis. Child. 1967; 113: 291–300.
- Houck, P., Nelson, J. and Kay, J. Fatal septicemia due to Staphylococcus aureus Amer. J. Dis. Child. 1972; 123: 45–48.
- Fuentes, S., Nood, E.V., Tims, S., Jong, I.H., Jfter, B.C. and Keller, J.J. Reset of a critically disturbed microbial ecosystem: faecal transplant in recurrent Clostridium difficile ISME J. 2014; 8: 1621–1633.
- Kassam, Z., Lee, C.H., Yuan, Y. and Hunt, R.H. Fecal microbiota transplantation for Clostridium difficile infection : systematic review and meta-analysis. Am. J. Gastroenterol. 2013; 108: 500–508.
- Tacconelli, E., Mazzaferri, F., de Smet, A.M., Bragantini, D., Eggimann, P. and Huttner, B.D. ESCMID-EUCIC clinical guidelines on decolonization of multidrug-resistant Gram-negative bacteria carriers. Clin. Microbiol. Infect. 2019; 25: 807–817.
- Teerawattanapong, N., Kengkla, K., Dilokthornsakul, P., Saokaew, S., Apisarnthanarak, A. and Chaiyakunapruk, N. Prevention and control of multidrug-resistant Gram-negative bacteria in adult intensive care units: a systematic review and network meta-analysis. Clin. Infect. Dis. 64(Suppl 2): 2017; S51–S60.
- Otter, J.A., Mutters, N.T., Tacconelli, E., Gikas, A. and Alison, H. Controversies in guidelines for the control of multidrug-resistant Gram-negative bacteria in EU countries. Clin. Microbiol. Infect. 2015; 21: 1057–1066.
- Ayraud-Thévenot , Huart, C., Mimoz, O., Taouqi, M., Laland, C. and Bousseau, A. Control of multi-drug-resistant Acinetobacter baumannii outbreaks in an intensive care unit: feasibility and economic impact of rapid unit closure. J. Hosp. Infect. 2012; 82: 290–292. doi: 10.1016/j.jhin.2012.08.016.
- Otter, J.A., Burgess, P., Davies, F., Mookerjee, S., Gilchrist, M. and Parsons, D. Counting the cost of an outbreak of carbapenemase-producing Enterobacteriaceae: an economic evaluation from a hospital perspective. Clin. Microbiol. Infect. 2017; 23: 188–196.