Abstract :
Being a criteria pollutant Fine Particulate Matter (PM2.5) exposure not only affects human health but also deteriorates environmental health, air quality and artifacts. Traffic, biomass burning and industrial activities are important contributors to ambient fine particulate matter in major cities of the world. Therefore, to reduce fine particulate matter pollution and the considerable disease burden it causes solutions to bring down ambient fine particulate matter are needed. Carbonaceous aerosols are found to be a significant contributor to fine particulate matter. These aerosols are subdivided into organic carbon and elemental carbon. Elemental carbon is released from primary sources whereas organic carbon can be released either from primary or secondary sources. This paper presents a comprehensive critical review of the assessment of fine particulate matter and its carbonaceous content in the past decade on different sites in New Delhi, the capital of India. Considerable health effects of particulate pollution have also been discussed in the paper. Critically reviewed data showed a non – significant increase in the trend of particulate matter concentration. It was also shown through the data of each study that the emission standards of WHO exceeded by 15 times whereas for NAAQS they exceeded by 5 times respectively.
Keywords :
Carbonaceous aerosols, Elemental Carbon, Health Effects, Organic Carbon, Particulate Matter., PM2.5References :
- The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5)(2013).
- Sun, Q., Hong, X., &Wold, L. E. (2010). Cardiovascular effects of ambient particulate air pollution exposure. Circulation, 121(25), 2755-2765.
- Viana, M., Querol, X., Alastuey, A., Ballester, F., Llop, S., Esplugues, A., … &Herce, M. D. (2008). Characterizing exposure to PM aerosols for an epidemiological study. Atmospheric Environment, 42(7), 1552-1568.
- Zhang, L. W., Chen, X., Xue, X. D., Sun, M., Han, B., Li, C. P., … & Tang, N. J. (2014). Long-term exposure to high particulate matter pollution and cardiovascular mortality: a 12-year cohort study in four cities in northern China. Environment International, 62, 41-47.
- Balakrishnan, K., Dey, S., Gupta, T., Dhaliwal, R. S., Brauer, M., Cohen, A. J., … &Dandona, L. (2019). The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017. The Lancet Planetary Health, 3(1), e26-e39.
- Trang, N. H., & Tripathi, N. K. (2014). Spatial correlation analysis between particulate matter 10 (PM10) hazard and respiratory diseases in Chiangmai province Thailand. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(8), 185.
- Singh, R., Sharma, B. S., &Chalka, S. N. (2010). Seasonal air quality profile of inorganic ionic composition of PM10 near Taj Mahal in Agra, India. Environmental monitoring and assessment, 168(1), 195-203.
- Singh, R., & Sharma, B. S. (2012). Composition, seasonal variation, and sources of PM10 from world heritage site Taj Mahal, Agra. Environmental monitoring and assessment, 184(10), 5945-5956.
- Soni, M., Payra, S., & Verma, S. (2018). Particulate matter estimation over a semi-arid The region in Jaipur, India uses satellite AOD and meteorological parameters. Atmospheric Pollution Research, 9(5), 949-958.
- Fang, G. C., Wu, Y. S., Chou, T. Y., & Lee, C. Z. (2008). Organic carbon and elemental carbon in Asia: A review from 1996 to 2006. Journal of Hazardous Materials, 150(2), 231-237.
- Sharma, M., Kishore, S., Tripathi, S. N., & Behera, S. N. (2007). Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: a study at Kanpur, India. Journal of Atmospheric Chemistry, 58(1), 1-17.
- Kong, S., Ji, Y., Lu, B., Chen, L., Han, B., Li, Z., & Bai, Z. (2011). Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmospheric Environment, 45(30), 5351-5365.
- Zheng, J., Che, W., Zheng, Z., Chen, L., & Zhong, L. (2013). Analysis of spatial and temporal variability of PM10 concentrations using MODIS aerosol optical thickness in the Pearl River Delta Region, China. Aerosol and Air Quality Research, 13(3), 862-876.
- Srivastava, D., Favez, O., Perraudin, E., Villenave, E., &Albinet, A. (2018). Comparison of measurement-based methodologies to apportion secondary organic carbon (SOC) in PM5: a review of recent studies. Atmosphere, 9(11), 452.
- Seinfeld, J. H., &Pandis, S, N. (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York.
- Ancelet, T., Davy, P. K., Trompetter, W. J., Markwitz, A., &Weatherburn, D. C. (2013). Carbonaceous aerosols in a wood-burning community in rural New Zealand. Atmospheric Pollution Research, 4(3), 245-249.
- Dockery, D., & Pope, A. (1996). Epidemiology of acute health effects: summary of time-series studies.
- Pope Iii, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132-1141.
- Murillo, J. H., Marin, J. F. R., Roman, S. R., Guerrero, V. H. B., Arias, D. S., Ramos, A. C., … & Baumgardner, D. G. (2013). Temporal and spatial variations in organic and elemental carbon concentrations in PM10/PM5 in the metropolitan area of Costa Rica, Central America. Atmospheric Pollution Research, 4(1), 53-63.
- Chameides, W. L., Yu, H., Liu, S. C., Bergin, M., Zhou, X., Mearns, L., … & Giorgi, F. (1999). Case study of the effects of atmospheric aerosols and regional haze on agriculture: an opportunity to enhance crop yields in China through emission controls?. Proceedings of the National Academy of Sciences, 96(24), 13626-13633.
- Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson, J.,… & Valero, F. P. J. (2001). Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo‐Asian haze. Journal of Geophysical Research: Atmospheres, 106(D22), 28371-28398.
- Li, W., & Bai, Z. (2009). Characteristics of organic and elemental carbon in atmospheric fine particles in Tianjin, China. Particuology, 7(6), 432-437.
- Xu, Y., Bahadur, R., Zhao, C., & Ruby Leung, L. (2013). Estimating the radiative forcing of carbonaceous aerosols over California based on satellite and ground observations. Journal of Geophysical Research:Atmospheres, 118(19), 11-148.
- Jones, G. S., Jones, A., Roberts, D. L., Stott, P. A., & Williams, K. D. (2005). Sensitivity of global‐scale climate change attribution results to the inclusion of fossil-fuel black carbon aerosol. Geophysical Research Letters, 32(14).
- Pandis, S. N., Harley, R. A., Cass, G. R., & Seinfeld, J. H. (1992). Secondary organic aerosol formation and transport. Atmospheric Environment. Part A. General Topics, 26(13), 2269-2282.
- Turpin, B. J., &Huntzicker, J. J. (1995). Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment, 29(23), 3527-3544.
- Asa ‐ Awuku, A., Moore, R. H., Nenes, A., Bahreini, R., Holloway, J. S., Brock, C. A., … & Huey, L. G. (2011). Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study. Journal of Geophysical Research: Atmospheres, 116(D11).
- Akhter, M. S., Chughtai, A. R., & Smith, D. M. (1985). The structure of hexane soot I: spectroscopic studies. Applied Spectroscopy, 39(1), 143-153. Ancelet, T., Davy, P. K., Trompetter, W. J., Markwitz, A., &Weatherburn, D. C. (2013). Carbonaceous aerosols in a wood-burning community in rural New Zealand. Atmospheric Pollution Research, 4(3), 245-249.
- Hansen, J., Sato, M., Ruedy, R., Lacis, A., &Oinas, V. (2000). Global warming in the twenty-first century: An alternative scenario. Proceedings of the National Academy of Sciences, 97(18), 9875-9880.
- Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821), 695-697.
- Houghton, J. T., Ding, Y., Griggs, D., Noguer, M., van der Linden, P., Dai, X., & Johnson, C. A. (2001). Climate Change 2001 Z The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change.
- Fu, P., Guo, X., Cheung, F. M. H., & Yung, K. K. L. (2019). The association between PM 5 exposure and neurological disorders: a systematic review and meta-analysis. Science of the Total Environment, 655, 1240-1248.
- Liu, F., Huang, Y., Zhang, F., Chen, Q., Wu, B., Rui, W., … & Ding, W. (2015). Macrophages treated with particulate matter PM 5 induce selective neurotoxicity through glutaminase-mediated glutamate generation. Journal of neurochemistry, 134(2), 315-326.
- Power, M. C., Adar, S. D., Yanosky, J. D., &Weuve, J. (2016). Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: a systematic review of epidemiologic research. Neurotoxicology, 56, 235-253.
- Dellinger, B., Pryor, W. A., Cueto, R., Squadrito, G. L., Hegde, V., & Deutsch, W. A. (2001). Role of free radicals in the toxicity of airborne fine particulate matter. Chemical Research in Toxicology, 14(10), 1371-1377.
- Upadhyay, D., Panduri, V., Ghio, A., & Kamp, D. W. (2003). Particulate matter induces alveolar epithelial cell DNA damage and apoptosis: role of free radicals and the mitochondria. American Journal of Respiratory Cell and Molecular Biology, 29(2), 180-187.
- Clifford, A., Lang, L., Chen, R., Anstey, K. J., & Seaton, A. (2016). Exposure to air pollution and cognitive functioning across the life course–a systematic literature review. Environmental Research, 147, 383-398.
- Riva, D., Magalhães, C. B., Lopes, A., Lanças, T., Mauad, T., Malm, O., … & Zin, W. A. (2011). A low dose of fine particulate matter (PM2. 5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhalation Toxicology, 23(5), 257-267.
- Clifford, A., Lang, L., Chen, R., Anstey, K. J., & Seaton, A. (2016). Exposure to air pollution and cognitive functioning across the life course–a systematic literature review. Environmental Research, 147, 383-398.
- Martins, N. R., & Da Graca, G. C. (2018). Impact of PM5 in indoor urban environments: A review. Sustainable Cities and Society, 42, 259-275.
- Reddy, M. S., & Venkataraman, C. (2000). Atmospheric optical and radiative effects of anthropogenic aerosol constituents from India. Atmospheric Environment, 34(26), 4511-4523.
- Zhang, X. Y., Cao, J. J., Li, L. M., Arimoto, R., Cheng, Y., Huebert, B., & Wang, D. (2002). Characterization of atmospheric aerosol over XiAn in the south margin of the Loess Plateau, China. Atmospheric Environment, 36(26), 4189-4199.
- Trivedi, D. K., Ali, K., &Beig, G. (2014). Impact of meteorological parameters on the development of fine and coarse particles over Delhi. Science of the Total Environment, 478, 175-183.
- Hinds, W. C. (1999). Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons.
- Das, A., Singh, G., Habib, G., & Kumar, A. (2018). Non-carcinogenic and carcinogenic risk assessment of trace elements of PM 2.5 during winter and pre-monsoon seasons in Delhi: a case study. Exposure and Health, 12(1), 63-77.
- Singh, D. K., Sharma, S., Habib, G., & Gupta, T. (2015). Speciation of atmospheric polycyclic aromatic hydrocarbons (PAHs) present during fog time collected submicron particles. Environmental Science and Pollution Research, 22(16), 12458-12468.
- Kenny, L. C., Gussman, R., & Meyer, M. (2000). Development of a sharp-cut cyclone for ambient aerosol monitoring applications. Aerosol Science & Technology, 32(4), 338-358.
- Hyvärinen, A. P., Lihavainen, H., Komppula, M., Sharma, V. P., Kerminen, V. M., Panwar, T. S., &Viisanen, Y. (2009). Continuous measurements of optical properties of atmospheric aerosols in Mukteshwar, northern India. Journal of Geophysical Research: Atmospheres, 114(D8).
- Tiwari, S., Bisht, D. S., Srivastava, A. K., Pipal, A. S., Taneja, A., Srivastava, M. K., &Attri, S. D. (2014). Variability in atmospheric particulates and meteorological effects on their mass concentrations over Delhi, Atmospheric Research, 145, 45-56.
- Tiwari, S., Chate, D. M., Srivastava, A. K., Bisht, D. S., &Padmanabhamurty, B. (2012). Assessments of PM1, PM5 and PM10 concentrations in Delhi at different mean cycles. G eofizika, 29(2), 125-141.
- Tiwari, S., Srivastava, A. K., Bisht, D. S., Safai, P. D., &Parmita, P. (2013). Assessment of carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: characterization, sources and temporal variability. Natural Hazards, 65(3), 1745-1764.
- Tiwari, S., Srivastava, A. K., Bisht, D. S., Parmita, P., Srivastava, M. K., & Attri, S. D. (2013). Diurnal and seasonal variations of black carbon and PM5 over New Delhi, India: Influence of meteorology. Atmospheric Research, 125, 50-62.
- Pipal, A. S., Tiwari, S., Satsangi, P. G., Taneja, A., Bisht, D. S., Srivastava, A. K., & Srivastava, M. K. (2014). Sources and characteristics of carbonaceous aerosols at Agra “World heritage site” and Delhi “capital city of India”. Environmental Science and Pollution Research, 21(14), 8678-8691.
- Dumka, U. C., Tiwari, S., Kaskaoutis, D. G., Hopke, P. K., Singh, J., Srivastava, A. K., … & Pasha, G. M. (2017). Assessment of PM5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation. Journal of Atmospheric Chemistry, 74(4), 423-450.
- Panda, S., Sharma, S. K., Mahapatra, P. S., Panda, U., Rath, S., Mahapatra, M., … & Das, T. (2016). Organic and elemental carbon variation in PM 2.5 over the megacity Delhi and Bhubaneswar, a semi-urban coastal sites in India. Natural Hazards, 80(3), 1709-1728.
- Sharma, S. K., & Mandal, T. K. (2017). Chemical composition of fine mode particulate matter (PM2. 5) in an urban area of Delhi, India and its source Urban Climate, 21, 106-122.
- Sharma, S. K., Mandal, T. K., Jain, S., Sharma, A., & Saxena, M. (2016). Source apportionment of PM 2.5 in Delhi, India using the PMF model. Bulletin of Environmental Contamination and Toxicology, 97(2), 286-293.
- Jain, S., Sharma, S. K., Choudhary, N., Masiwal, R., Saxena, M., Sharma, A., … & Sharma, C. (2017). Chemical characteristics and source apportionment of PM 5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environmental Science and Pollution Research, 24(17), 14637-14656.
- Sharma, S. K., Saxena, M., & Mandal, T. K. (2019). Characteristics of gaseous and particulate ammonia and their role in the formation of secondary inorganic particulate matter at Delhi, India. Atmospheric Research, 218, 34-49.
- Jain, S., Sharma, S. K., Vijayan, N., & Mandal, T. K. (2020). Seasonal characteristics of aerosols (PM 5 and PM10) and their source apportionment using PMF: a four-year study over Delhi, India. Environmental Pollution, 262, 114337.
- Bisht, D. S., Dumka, U. C., Kaskaoutis, D. G., Pipal, A. S., Srivastava, A. K., Soni, V. K., … & Tiwari, S. (2015). Carbonaceous aerosols and pollutants over Delhi urban environment: temporal evolution, source apportionment and radiative forcing. Science of the Total Environment, 521, 431-445.
- Sharma, S. K., Mandal, T. K., Banoo, R., Rai, A., & Rani, M. (2022). Long-Term Variation in Carbonaceous Components of PM2. 5 from 2012 to 2021 in Delhi. Bulletin of Environmental Contamination and Toxicology, 1-9.
- Singh, D. P., Gadi, R., & Mandal, T. K. (2011). Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India. Atmospheric Environment, 45(40), 7653-7663.
- Gadi, R., Sharma, S. K., Mandal, T. K., Kumar, R., Mona, S., Kumar, S., & Kumar, S. (2018). Levels and sources of organic compounds in fine ambient aerosols over National Capital Region of India. Environmental Science and Pollution Research, 25(31), 31071-31090.
- Gadi, R., Saxena, M., Sharma, S. K., & Mandal, T. K. (2019). Short-term degradation of air quality during major firework events in Delhi, India. Meteorology and Atmospheric Physics, 131(4), 753-764.
- Sharma, S. K., Agarwal, P., Mandal, T. K., Karapurkar, S. G., Shenoy, D. M., Peshin, K., … & Sharma, A. (2017). Study on ambient air quality of megacity Delhi, India during the odd-even strategy. Mapan, 32(2), 155-165.
- Bhowmik, H. S., Naresh, S., Bhattu, D., Rastogi, N., Prévôt, A. S., & Tripathi, S. N. (2021). Temporal and spatial variability of carbonaceous species (EC; OC; WSOC and SOA) in PM2. 5 aerosol over five sites of Indo- Gangetic Plain. Atmospheric Pollution Research, 12(1), 375-390.
- Hama, S., Kumar, P., Alam, M. S., Rooney, D. J., Bloss, W. J., Shi, Z., … & Gupta, S. K. (2021). Chemical source profiles of fine particles for five different sources in Delhi. Chemosphere, 274, 129913.
- Pant, P., Shukla, A., Kohl, S. D., Chow, J. C., Watson, J. G., & Harrison, R. M. (2015). Characterization of ambient PM2. 5 at a pollution hotspot in New Delhi, India and inference of sources. Atmospheric Environment, 109, 178-189.
- Gadi, R., Sharma, S. K., & Mandal, T. K. (2019)b. Source apportionment and risk assessment of organic constituents in fine ambient aerosols (PM2. 5): A complete year study over National Capital Region of India. Chemosphere, 221, 583-596.
- Devi, N. L., Kumar, A., & Yadav, I. C. (2020). PM10 and PM 5 in Indo Gangetic Plain (IGP) of India: Chemical characterization, source analysis, and transport pathways. Urban Climate, 33, 100663.