Abstract :
Resistant breakdown is the genetic vulnerability that is devastating agriculture breeding and production of banana worldwide, therefore threateningburgeoning population.It takes 15 to 20 years for banana breeding pipeline and other stakeholders to release a cultivar that is fully evaluated to farmers. Disease like fusarium wilt disease (race 1) was reported to wipe away Gros Michel and the Tropical Race 4 (TR4) has wiped away all cultivars which were resistant to race1. Again banana breeding for resistant to sigatoka successively bred and released many hybrids but of recently of these hybrids including FHIA hybrids, Yagambi KM 5, Paka, young Calcutta 4 and T8 has lost their resistant to sigatoka. Due to political and commercial pressures, it is true that most of the released resistant cultivars are from single effective genes. Though durable resistance with a single dominant gene has been a serious challenge to achieve in breeding, this is because of broken-down resistance. This review used online resource to identify some causes of broken resistance in banana and provided some possible solutions to increase durability. Causes of broken resistance includes the practice of monoculture in large area, illegal use of chemicals, multiple infections, evolution of pathogens as the result of recombination, mutations, nature of interaction exhibited by released cultivars, low genetic base in banana, gene flow, through introductions of pathogens and climate change. It is widely accepted that different agronomic practices combined with strategic breeding and release of cultivars can elongate durability of resistant cultivars to pathogens in agricultural system. Through all the literature searched it is being unveiled yet the factors that govern quality and durability of resistance in resistant cultivars. I hereby conclude that breeding for resistance to diseases in banana should go par pursue with other disease management strategies. This is aimed at increasing durability of resistance to diseases in this highly expensive produced banana and plantain hybrids.
Keywords :
Banana cultivars, Breeding, Broken resistance, Hybrids.References :
- Kettles, G. J., Bayon, C., Canning, G., Rudd, J. J. and Kanyuka, K. (2016). Apoplastic recognition of multiple candidate effectors from the wheat pathogen Zymoseptoriatritici in the nonhost plant Nicotianabenthamiana. New Phytologist (2016) doi: 10.1111/nph.14215.
- Pink, D. A. C. and Hand, P. (2002). Plant Resistance and Strategies for Breeding Resistant Varieties. Proc. 6th Conf. EFPP 2002, Prague. Plant Protect. Sci., 38 (Special Issue 1), 2002: 9–13.
- van’t Slot, K, A. E., Gierlich, A. and Knogge, W. (2007), A Single Binding Site Mediates Resistance- and Disease-Associated Activities of the Effector Protein NIP1 from the Barley Pathogen Rhynchosporiumsecalis. Plant Physiology, July 2007, Vol. 144, pp. 1654–1666. www.plantphysiol.org/cgi/doi/10.1104/pp.106.094912.
- Yakubu, R. R., Nieves, E. and Weis, L. W. (2019). The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein–Protein Interactions (PPIs). Advances in Experimental Medicine and Biology 1140, https://doi.org/10.1007/978-3-030-15950-4_10.
- Adeleke, M. T. V., Pillay, M. and Okoli, B. E. (2021). Cytological Study of 2n Pollen Formation in Musa. Nig. J. Biotech. Vol. 38 (2) : 101-108. DOI: https://dx.doi.org/10.4314/njb.v38i2.11.
- Jin, T. and Yin, Q. (2019). Structural Immunology. Advances in Experimental Medicine and Biology. ISBN 978-981-13-9367-9 (eBook) https://doi.org/10.1007/978-981-13-9367-9.
- Gohre, V. and Robatzek, S. (2008). Breaking the Barriers: Microbial Effector Molecules Subvert Plant Immunity. Annu. Rev. Phytopathol. 2008. 46:189–215. doi: 10.1146/annurev.phyto.46.120407.110050.
- Toruno, T. Y., Stergiopoulos, I. and Coaker, G. (2016). Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annu. Rev. Phytopathol. 2016. 54:419–41. doi: 10.1146/annurev-phyto-080615-100204.
- Mendez, K. A. and Romero, H. M. (2017). Plant responses to pathogen attack: molecular basis of qualitative resistance.Rev.Fac.Nac.Agron. 70(2): 8225-8235.Doi: 10.15446/rfna.v70n2.64526.
- Alakonya, A., Kimunye, J., Mahuku, G., Amah, D., Uwimana, B., Brown, A. et al (2018) Progress in understanding Pseudocercospora banana pathogens and the development of resistant Musa germplasm. Plant Pathology, 67, 759–770.
- Brito, F. A., Faraaije, B. Miller, R. (2016). Sigatoka disease complex of banana in Brazil: Management practices and future directions. Article in Outlooks on Pest Management. DOI: 10.1564/v26_apr00 ©2015 Research Information Ltd. All rights reserved. pestoutlook.com
- Buddenhagen, I. W. (1987). Disease Susceptibility and Genetics in Relation to Breeding of Bananas and Plantains. Agronomy Department, University of California, Davis, CA 95616.
- De Lapeyre de Bellaire, L., Ngando, J. E., Abadie, C., Carlier, J., Lescot, T. and Fouré, E. (2006). Management of Black Sigatoka in Cameroon. Joiniville-santacatarina-Brasil.
- Erere, A., Abiodun, J., Elizabeth, A., Charity, A., Stephen, A., Aruna, A., Kayode, O. (2021). A Review on Research Trend on Sigatoka Diseases from 1965 -2018: Bibliometric Approach. Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 3952-3965.
- Lorenzen, J., Tenkouano, A., Bandyopadhyay, R., &Vroh-Bi, I. (2009). The role of crop improvement in pest and disease management. ActaHorticulturae, (828), 305–314.doi:10.17660/actahortic.2009.828.
- Wu, C-S, Sudianto, E,.Chiu, H-L,. Chao, C-P. and Chaw, S-M. (2021). Reassessing Banana Phylogeny and Organelle Inheritance Modes Using Genome Skimming Data. Front. Plant Sci. 12:713216. doi: 10.3389/fpls.2021.713216.
- Arango-Isaza R, Diaz-Trujillo C, Dhillon B et al., (2016). Combating a global threatto a clonalcrop: banana blackSigatokapathogenPseudocercosporafijiensis (synonymMycosphaerellafijiensis) genomesrevealcluesfordisease control. PLoSGenetics 12, e1005876.
- Sharma, T. R. Das, A. Thakur, s. and Jalali, B. (2014). Recent Understanding on Structure, Function and Evolution of Plant Disease Resistance Genes. Proc. Indian Natn. Sc.i Acad. 80 No. 1: pp. 83-93.Doi 10.16943/ptinsa/2014/v80i1/55088.
- Faulkner, C. and Robatzek, S. (2012). Plants and pathogens: putting infection strategies and defense mechanisms on the map CurrOpin Plant Biol 15 699-707.
- Mejía-Teniente, L., Torres-Pacheco, I., González-Chavira , M. M., Ocampo-Velazquez, R. V., Herrera-Ruiz, G., Chapa-Oliver, A. M. and Guevara-González, R. G. (2010). Use of elicitors as an approach for sustainable agriculture. African Journal of Biotechnology Vol. 9 (54), pp. 9155-9162. Available online at http://www.academicjournals.org/AJB.
- Selin C., de Kievit, T. R., Belmonte, M. F. and Fernando, W. G. D. (2016). Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges. Front. Microbiol. 7:600. doi: 10.3389/fmicb.2016.00600.
- Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J. and Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontier in Plant Science. doi: 10.3389/fpls.2014.00655.
- Hollomon, D. W. (2015). Fungicide Resistance: 40 Years on and Still a Major Problem. Fungicide Resistance in Plant Pathogens, 3–11.doi:10.1007/978-4-431-55642-8_1
- Daldal, F., Tokito, M. K., Davidson, E., &Faham, M. (1989). Mutations conferring resistance to quinol oxidation (Qz) inhibitors of the cyt bc1 complex of Rhodobactercapsulatus. The EMBO Journal, 8(13), 3951–3961.doi:10.1002/j.1460-2075.1989.tb08578.x
- Richter, T.E. and Ronald, P. C. (2000). Evolution of diseases resistant genes. Plant molecular biology, 42(1) 195–204. http://escholarship.org/uc/item/6kw819pt.
- Noar, R.D. Thomas, E. and Daub, M.E. (2022). Genetic Characteristics and Metabolic Interactions between Pseudocercosporafijiensis and Banana: Progress toward Controlling Black Sigatoka. Plants 2022, 11, 948. https://doi.org/10.3390/ plants11070948.
- Friesen, T. L. (2016). Combating the Sigatoka Disease Complex on Banana. PLoS Genet 12 (8): e1006234. doi:10.1371/journal.pgen.1006234.
- McDonald, A. B. and Linde, C. (2002). The population genetics of plant pathogens and breeding strategies for durable resistance.Euphytica 124: 163–180.
- McMullen, P. M. and Lamey, H. A. (2001). Plant disease development and management. www.ag.ndsu.edu. North Dakota State University Agriculture and University Extension Dept. 7070, Morrill 7, P.O. Box 6050, Fargo, ND 58108-605.
- He, D.-C.; He, M.-H.; Amalin, D.M.; Liu, W.; Alvindia, D.G.; Zhan, J. (2021). Biological Control of Plant Diseases: An Evolutionary and Eco-Economic Consideration. Pathogens 2021, 10, 1311. https:// doi.org/10.3390/pathogens10101311.
- Gilbert, G. S. (2002). Evolutionary ecology of plant diseases in natural ecosystems. Annual Review Phytopathology. 2002. 40:13–43 doi: 10.1146/annurev.phyto.40.021202.110417.
- Simms, E. L. (1996). The Evolutionary Genetics of Plant-Pathogen Systems; Understanding the coevolution of hosts and parasites is key to understanding their ecology. Bio-Science Vol. 46 No.2: P 137-145.
- Braisier, C. M. (2001). Rapid Evolution of Introduced Plant Pathogens via Interspecific Hybridization. BioScience • February 2001 / Vol. 51 No. 2: P 123-143.
- Lo Iacono, G., van den Bosch, F. and Gilligan, C. A. (2013). Durable Resistance to Crop Pathogens: An Epidemiological Framework to Predict Risk under Uncertainty. PLoSComputBiol 9(1): e1002870. doi:10.1371/journal.pcbi.1002870.
- Leach, J. E., Vera Cruz, C. M., Bai, J., & Leung, H. (2001). Pathogen fitness penalty as apredictor of durability of disease resistance genes. Annual Review of Phytopathology, 39(1), 187–224.DOI: 10.1146/annurev.phyto.39.1.187.
- Ramalingam, J., Raveendra, C., Savitha, P., Vidya, V., Chaithra, T. L., Velprabakaran, S., …Vanniarajan, C. (2020). Gene Pyramiding for Achieving Enhanced Resistance to Bacterial Blight, Blast, and Sheath Blight Diseases in Rice. Frontiers in Plant Science,doi:10.3389/fpls.2020.591457.
- Harrison, B. D. (2002). Virus variation in relation to resistance breaking in plants. Euphytica124 : 181-192.
- Palloix, A., Ayme, V. and Moury, B. (2009). Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytologist, Wiley, 2009, 183 (1), pp.190-199. ff10.1111/j.1469-8137.2009.02827.xff. ffhal-02665455.
- Garrett, K. A. and Mundt, C. C. (1999). Epidemiology in mixed host populations. Phytopathology, Vol. 89, No. 11, 89:984-990.
- Mundt, C., Cowger, C. and Garret, A. K. (2002). Relevance of integrated disease management to resistance durability. DOI:1023/A:1015642819151.
- Mundt, C. C. (2014). Durable resistance: A key to sustainable management of pathogens and pests. Infection, Genetics and Evolution. 27(), 446–455. doi:10.1016/j.meegid.2014.01.011.
- Lannou C. 2001. Intrapathotype diversity for aggressiveness and pathogen evolution in cultivar mixtures. Phytopathology 91: 500–510.
- Thangavelu, R., Loganathan, M., Arthee, R., Prabakaran, M. and Uma, S. (2020). Fusarium wilt: a threat to banana cultivation and its management. CAB Reviews 2020 15, No. 004. doi: 10.1079/PAVSNNR202015004.
- Kumar, V. B., Backiyarani,S., Chandrasekar,A. et al (2020). Strengthening of banana breeding through data digitalization. Database 2020. Vol. 2020: article ID baz145; doi:10.1093/database/baz145.
- Nansamba, M., Sibiya, J., Tumuhimbise, R., Karamura, D., Kubiriba, J., &Karamura, E. (2020). Breeding banana (Musa spp.) for drought tolerance: A review. Plant Breeding.doi:10.1111/pbr.12812.
- Burdon, J. J. and Zhan, J. (2020). Climate change and disease in plant communities. PLoSBiol 18(11): e3000949. https://doi.org/10.1371/journal. pbio.3000949.
- Yáñez-López, R., Torres-Pacheco, I., Guevara-González, R. G., Hernández-Zul, M. I., Quijano-Carranza, J. A. and Rico-García, E. (2012). The effect of climate change on plant diseases. African Journal of Biotechnology Vol. 11(10), pp. 2417-2428, 2 February, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB10.2442.
- Woodruff R.B. (1997), Customer value: The next source for competitive advantage, “Journal of the Academy of Marketing Science”, Vol. 25, Iss. 2.
- Rimbaud, l., Papaïx, J., Barrett, L. G., Burdon, J. J., and Thrall, P. H. (2018). Mosaics, mixtures, rotations or pyramiding: What is the optimal strategy to deploy major gene resistance? Evolutionary Applications. 2018;11: 1791–1810. DOI: 10.1111/eva.12681.
- Adugna, A. M. (2004). Alternate Approaches in Deploying Genes for Disease Resistance in Crop Plants. Asian Journal of Plant Sciences, 3: 618-623. DOI:3923/ajps.2004.618.623.
- Djidjou-Demasse, R., Moury, B. and Fabre, F. (2017). Mosaics often outperform pyramids: insights from a model comparing strategies for the deployment of plant resistance genes against viruses in agricultural landscapes. New Phytologist (2017) 216: 239–253 doi: 10.1111/nph.14701.
- Makkouk, K. M., Kumari, S. G., van Leur, J. A. G., & Jones, R. A. C. (2014). Control of Plant Virus Diseases in Cool-Season Grain Legume Crops. Advances in Virus Research. 207–253.doi:10.1016/b978-0-12-801246-8.00004-4.
- Harahap, Z. and T.S. Silitonga, (1988). Breeding for resistance against major pests and diseases of rice. Proceedings of International Symposium Workshop, (ISW`88), Kuala Lampur, Malaysia, pp: 110-112.
- Fullerton, R. and Olsen, T. (1995). Pathogenic variability in Mycosphaerellafijiensis Morelet, cause of black Sigatoka in banana and plantain. New Zealand Journal of Crop and Horticultural Science, 23, 39–48.
- Miranda, M.P.R., Vicente, L.P.R., Trujillo, R. & Betancourt, D.M. (2006) Variabilidad de MycosphaerellafijiensisMorelet. Estabilidad de la resistencia a Sigatokanegra de los clones hibridos de la FHIA. Fitosanidad, 10, 37–47.
- Pink, D. A. C. (2002). Strategies using genes for non-durable disease resistance. Euphytica, 124: 227–236.
- Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., and Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544. doi: 10.1016/j.tree.2004.07.021.
- Consortium, R. (2016). Combining selective pressures to enhance the durability of disease resistance genes. Front. Plant Sci. 7:1916. doi: 10.3389/fpls.2016.01916.
- Kobayashi, K., Sekine, K. and Nishiguchi, M. (2014). Breakdown of plant virus resistance: can we predict and extend the durability of virus resistance? Journal of General Plant Patholology. DOI 10.1007/s10327-014-0527-1.
- Palloix, A., Ayme V. and Moury, B. (2009), Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:190–199.
- Quenouille, J., Montarry, J., Palloix A. and Moury B. (2013). Farther, slower, stronger: how the plant genetic background protects a major resistance gene from breakdown. Mol Plant Pathol 14:109–118.
- Lamichhane, J. R., Messéan, A., & Ricci, P. (2018). Research and innovation priorities as defined by the Ecophyto plan to address current crop protection transformation challenges in France. Advances in Agronomy.doi:10.1016/bs.agron.2018.11.003.
- Elisabeth Lof, M., de Vallavieille-Pope, C., and van der Werf, W. (2017). Achieving Durable Resistance Against Plant Diseases: Scenario Analyses with a National-Scale Spatially Explicit Model for a Wind-Dispersed Plant Pathogen. Phytopathology, 107(5), 580–589.doi:10.1094/phyto-05-16-0207-r.
- Ross, W. D. and Brown, L. (2009). Oxford World’s Classics: Aristotle: The Nicomachean Ethics (Revised Edition). Publisher: Oxford University Press; Oxford World’s Classics.DOI: 1093/actrade/9780199213610.book.1.
- Waniale, A., Swennen, R., Mukasa, S.B., Tugume, A.K., Kubiriba, J., Tushemereirwe, W.K., Batte, M., Brown, A., Tumuhimbise, R. (2021). Seed Set Patterns in East African Highland Cooking Bananas Are Dependent on Weather before, during and after Pollination. Horticulturae 2021, 7, 165. https://doi.org/10.3390/ horticulturae7070165.
- Pegg, K. G., Coates, L. M., O’Neill, W. T., & Turner, D. W. (2019). The Epidemiology of Fusarium Wilt of Banana. Frontiers in Plant Science, 10.doi:10.3389/fpls.2019.01395.
- M. A., Haydock, P. P. J. and Jenkinson, P. (2002). Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathology (2002) 51, 683–697.
- Mwangi, M. W. (2014). Interaction between fusarium wilt and root-knot nematodes in tomato and the potential integrated strategies in management of disease complex. A thesis submitted in fulfilment of the award of degree of doctor of philosophy (PhD) in crop protection. Deparment of crop science and protection. Nairobi University of Agriculture.
- Bakry, F.D.R., Carreel, F.O., Jenny, C. & Horry, J.P. (2009) Genetic improvement of banana. In: Mohan Jain, S. &Priyadarshan, P.M. (Eds.) Breeding Plantation Tree Crops: Tropical Species. New York, NY: Springer, pp. 3–50.
- Carlier J, Bonnot F, Roussel V, Ravel S, Martinez RT, Perez-Vicente L, Abadie C, Wright S. (2021). Convergent adaptation to quantitative host resistance in a major plant pathogen. mBio 12:e03129-20. https://doi.org/10.1128/ mBio.03129-20.
- Rosenzweig C, Tubiello FN (2007). Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitig. Adapt. Strat. Glob. Change. 12: 855-873.
- Zhan, J., Mundt, C. C., & McDonald, B. A. (2007). Sexual reproduction facilitates the adaptation of parasites to antagonistic host environments: Evidence from empirical study in the wheat-Mycosphaerellagraminicola system. International Journal for Parasitology, 37(8-9), 861–870.doi:10.1016/j.ijpara.2007.03.003.
- Brown, A., Tumuhimbise, R., Amah, D., Uwimana, B., Nyine, M., Mduma, H., …Swennen, R. (2017). Bananas and Plantains (Musa spp.). Genetic Improvement of Tropical Crops, 219–240.doi:10.1007/978-3-319-59819-2_7.
- De Langhe, E., Vrydaghs, L., De Maret, P., Perrier, X., & Denham, T. (2009). Why Bananas Matter: An introduction to the history of banana domestication. Ethnobotany Research and Applications, 7, 165.doi:10.17348/era.7.0.165-177.
- Simmonds N.W. 1962. The Evolution of the Bananas. Tropical Science Series. Longmans, London.