Abstract :
Thiamethoxam is one of the second-generation neonicotinoids, a new class of insecticides. The study was designed to investigate the effect of thiamethoxam on fertility in bucks. For this purpose, sixteen male adult male chinchilla rabbits were divided in two groups. Thiamethoxam intoxicated group was treated with thiamethoxam at dose of 250 mg/Kg body weight for 3 months. Semen analysis revealed distinct changes in sperm characteristics including significant decrease in sperm motility (both mass and individual) and sperm count. In addition, significant increase in dead spermatozoa and sperm deformities. Moreover, elevation in testicular concentration of MDA and GST was significant. GSH was significantly decreased. Degeneration and necrosis of spermatogenic cells with intertubular edema and vacuolations in seminiferous tubules were the major observed histopathological changes in the testis of intoxicated animals. In conclusion, thiamethoxam administration for 3 months induced significant decrease in fertility and oxidative stress in the reproductive system of adult male.
Keywords :
Antioxidants., Oxidative, Patients, StressReferences :
- Asadi, N., Bahmani, M., Kheradmand, A., and Rafieian-Kopaei, M. (2017). The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. Journal of clinical diagnostic research: JCDR, 11(5): p. IE01.
- Kothari, S., Thompson, A., Agarwal, A., and du Plessis, S.S. (2010). Free radicals: their beneficial and detrimental effects on sperm function.
- Tomizawa, M. and Casida, J.E. (2005). Neonicotinoid insecticide toxicology: mechanisms of selective action. Rev. Pharmacol. Toxicol., 45: p. 247-268.
- Wang, X., Anadón, A., Wu, Q., Qiao, F., Ares, I., Martínez-Larrañaga, M.-R., Yuan, Z., and Martínez, M.-A. (2018). Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism. Rev. Pharmacol. Toxicol., 58: p. 471-507.
- El Okle, O., Lebda, M., and Tohamy, H. (2016). Thiamethoxam-induced biochemical, hormonal and histological alterations in rats. Int J Toxicol Pharmacol Res, 8: p. 320-325.
- El Okle, O.S., El Euony, O.I., Khafaga, A.F., and Lebda, M.A. (2018). Thiamethoxam induced hepatotoxicity and pro-carcinogenicity in rabbits via motivation of oxidative stress, inflammation, and anti-apoptotic pathway. Environmental Science and Pollution Research, 25(5): p. 4678-4689.
- Green, T., Toghill, A., Lee, R., Waechter, F., Weber, E., and Noakes, J. (2005). Thiamethoxam induced mouse liver tumors and their relevance to humans: part 1: mode of action studies in the mouse. Sci., 86(1): p. 36-47.
- Green, T., Toghill, A., Lee, R., Waechter, F., Weber, E., Peffer, R., Noakes, J., and Robinson, M. (2005). Thiamethoxam induced mouse liver tumors and their relevance to humans: Part 2: Species differences in response. Sci., 86(1): p. 48-55.
- Tomizawa, M., Lee, D.L., and Casida, J.E. (2000). Neonicotinoid insecticides: molecular features conferring selectivity for insect versus mammalian nicotinic receptors. Agric. Food Chem., 48(12): p. 6016-6024.
- Material safety data sheet. 2011; Available from:
https://assets.syngenta.ca/pdf/ca/msds/Actara_240SC_28407_en_msds.pdf.
- Klinefelter, G.R. and Rao Veeramachaneni, D.N., Assessment of male reproductive toxicity, in Haye’s Principles and Methods of Toxicology, A.W. Hayes and C.L. Kruger, Editors. 2014, Taylor & Francis Group, CRC Press. p. 1601-1635.
- El-Battawy, K. and El-Nattat, W. (2013). Evaluation of Rabbit Semen Quality Using Resazurin Reduction Test.
- Beutler, E., Duron, O., and Kelly, M. (1963). Improved method for the determination of blood glutathione. Lab Clin. Med., 61: p. 882-888.
- Habig, W., Pabst, M., and Jakoby, W. (1974). The first enzymatic step in mercapturic acid formation. Glutathione-S-transferase. Biol. Chem., 249: p. 7130-7139.
- Fossati, P., Prencipe, L., and Berti, G. (1980). Use of 3, 5-Dichloro- 2-hydroxybenzenesulfonic Acid/4-Ami nophenazone Chromogenic System in Direct Enzymic Assay of Uric Acid in Serum and Urine. CHEM., 26(2): p. 227-231.
- Aebi, H. (1984). Catalase in vitro. Methods Enzymol, 105: p. 121-126.
- Satoh, K. (1978). Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clinica Chimica Acta, 90: p. 37-43.
- Ohkawa, H., Ohishi, W., and yagi, K. (1979). Assay for Lipid Peroxides in Animal tissues by Thiobarbituric Acid Reaction. Biochem, 95: p. 351-358.
- El-Ghor, A.A., Noshy, M.M., Galal, A., and Mohamed, H.R.H. (2014). Normalization of nano-sized TiO2-induced clastogenicity, genotoxicity and mutagenicity by chlorophyllin administration in mice brain, liver, and bone marrow cells. Toxicological Sciences, 142(1): p. 21-32.
- Tice, R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J., and Sasaki, Y. (2000). Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environmental and molecular mutagenesis, 35(3): p. 206-221.
- Bancroft, J.D. and Gamble, M., Theory and practice of histological techniques. 2008: Elsevier health sciences.
- Shalaby, S.E., Farrag, A.R.H., Farrag, A., and Gamila, S. (2010). Toxicological potential of thiamethoxam insecticide on Albino rats and its residues in some organs. JASMR, 5(2): p. 165-172.
- David, D., George, I.A., and Peter, J.V. (2007). Toxicology of the newer neonicotinoid insecticides: imidacloprid poisoning in a human. Toxicol., 45(5): p. 485-486.
- Mohamed, F., Gawarammana, I., Robertson, T.A., Roberts, M.S., Palangasinghe, C., Zawahir, S., Jayamanne, S., Kandasamy, J., Eddleston, M., and Buckley, N.A. (2009). Acute human self-poisoning with imidacloprid compound: a neonicotinoid insecticide. PLoS One, 4(4): p. e5127.
- Imamura, T., Yanagawa, Y., Nishikawa, K., Matsumoto, N., and Sakamoto, T. (2010). Two cases of acute poisoning with acetamiprid in humans. Toxicol., 48(8): p. 851-853.
- Berg, G.L., Sine, C., Meister, R., and Poplyk, J. (1986). Farm chemicals handbook. Willoughby, OH: Meister Publishing Company.
- Bal, R., Naziroğlu, M., Türk, G., Yilmaz, Ö., Kuloğlu, T., Etem, E., and Baydas, G. (2012). Insecticide imidacloprid induces morphological and DNA damage through oxidative toxicity on the reproductive organs of developing male rats. Cell biochemistry and function, 30(6): p. 492-499.
- Bal, R., Türk, G., Tuzcu, M., Yilmaz, O., Kuloglu, T., Gundogdu, R., Gür, S., Agca, A., Ulas, M., and Çambay, Z. (2012). Assessment of imidacloprid toxicity on reproductive organ system of adult male rats. Journal of Environmental Science and Health, Part B, 47(5): p. 434-444.
- Oyeyipo, I.P., Yinusa, R., Obukowho Emikpe, B., and Folashade Bolarinwa, A. (2011). Effects of Nicotine on Sperm Characteristics and Fertility Profile in Adult Male Rats: A Possible. Journal of Reproduction & Infertility, 12(3): p. 201-207.
- Gu, Y.-h., Li, Y., Huang, X.-f., Zheng, J.-f., Yang, J., Diao, H., Yuan, Y., Xu, Y., Liu, M., and Shi, H.-j. (2013). Reproductive effects of two neonicotinoid insecticides on mouse sperm function and early embryonic development in vitro. PLoS One, 8(7): p. e70112.
- Schirmer, S., Eckhardt, I., Lau, H., Klein, J., DeGraaf, Y., Lips, K.S., Pineau, C., Gibbins, I.L., Kummer, W., and Meinhardt, A. (2011). The cholinergic system in rat testis is of non-neuronal origin. Reproduction, 142(1): p. 157-166.
- Bray, C., Son, J.-H., Kumar, P., and Meizel, S. (2005). Mice deficient in CHRNA7, a subunit of the nicotinic acetylcholine receptor, produce sperm with impaired motility. Reprod., 73(4): p. 807-814.
- HIRANO, T., YANAI, S., OMOTEHARA, T., HASHIMOTO, R., UMEMURA, Y., KUBOTA, N., MINAMI, K., NAGAHARA, D., MATSUO, E., and AIHARA, Y. (2015). The combined effect of clothianidin and environmental stress on the behavioral and reproductive function in male mice. The Journal of Veterinary Medical Science, 77(10): p. 1207.
- Tokumoto, J., Danjo, M., Kobayashi, Y., Kinoshita, K., Omotehara, T., Tatsumi, A., Hashiguchi, M., Sekijima, T., Kamisoyama, H., and Yokoyama, T. (2013). Effects of exposure to clothianidin on the reproductive system of male quails. Journal of Veterinary Medical Science, 75(6): p. 755-760.
- Memon, S.A., Memon, N., Mal, B., Ahmed, S., and Shah, M. (2014). Histopathological changes in the gonads of Male rabbits (Oryctolagus cuniculus) on exposure to imidacloprid insecticide.
- Swenson, T.L. and Casida, J.E. (2013). Neonicotinoid formaldehyde generators: Possible mechanism of mouse-specific hepatotoxicity/hepatocarcinogenicity of thiamethoxam. Lett., 216(2-3): p. 139-145.
- National Toxicology Program (2011). NTP 12th Report on Carcinogens. Report on carcinogens: carcinogen profiles, 12: p. iii.
- Green, T., Toghill, A., Lee, C., Waechter, F., Weber, E., Peffer, R., Noakes, J., and Robinson, M. (2005). Thiamethoxam Induced Mouse Liver Tumors and Their Relevance to Humans: Part 2: Species Differences in Response. Toxicological Sciences, 86(1): p. 48-55.
- Aitken, R.J. and Roman, S.D. (2008). Antioxidant systems and oxidative stress in the testes. Med. Cell. Longev., 1(1): p. 15-24.
- Bal, R., Türk, G., Tuzcu, M., Yılmaz, Ö., Kuloğlu, T., Baydaş, G., Naziroğlu, M., Yener, Z., Etem, E., and Tuzcu, Z. (2013). Effects of the neonicotinoid insecticide, clothianidin, on the reproductive organ system in adult male rats. Drug Chem. Toxicol., 36(4): p. 421-429.
- Turner, T.T. and Lysiak, J.J. (2008). Oxidative stress: a common factor in testicular dysfunction. Androl., 29(5): p. 488-498.
- Sauer, E., Moro, A.M., Brucker, N., Nascimento, S., Gauer, B., Fracasso, R., Gioda, A., Beck, R., Moreira, J.C., and Eifler-Lima, V.L. (2014). Liver δ-aminolevulinate dehydratase activity is inhibited by neonicotinoids and restored by antioxidant agents. J. Environ. Res. Public Health, 11(11): p. 11676-11690.
- Duzguner, V. and Erdogan, S. (2012). Chronic exposure to imidacloprid induces inflammation and oxidative stress in the liver & central nervous system of rats. Biochem. Physiol., 104: p. 58–64.