Abstract :
Lung cancer is the main basis of cancer death amongst men and women, making up almost 25% of the world’s total cancer deaths. Lung cancer described for nearly 1.6 million deaths in 2012 and 1.80 million deaths in 2020. Small cell lung cancer and non-small-cell lung cancer are the two key categories of Lung cancer. The signs of lung cancer include hemoptysis, weight loss, shortness of breath and chest pain. Lung cancer treated by chemotherapy, surgery and CT scan. In this review paper, one of the most crucial zones aiming lung cancer diagnosis has been discussed. Computer-aided diagnosis (CAD) systems adapted for lung cancer can increase the patients’ survival chances. A typical CAD system for lung cancer functions in the fields of lung segmentation, detecting lung nodules and the diagnosis of the nodules as benign or malignant. CAD systems for lung cancer are examined in a huge number of research case studies. CAD system steps and outlining of inhibitor genes at molecular level is being discussed. An insight into multi-omics and molecular dynamics simulations is also given in this paper.
Keywords :
Benign or malignant nodule diagnosis, CAD system for lung cancer, Lung cancer diagnosis, MD simulations., Multi-omicsReferences :
1. Lung Carcinoma: Tumors of the Lungs .Merck Manual Professional Edition. online edition. Retrieved 15th August 2007.
2. Non-small cell lung cancer Treatment-Patient Version (PDQ®).NCL. May 12,2015. retrieved 5 March 2016.
3. Stewart, edited by Bemard W, Wild, Christopher P. World cancer report2014. Lyon: IARC Press pp.350-352.ISBN 9789283204299.
4. World Cancer Report 2014.World Health Organization. 2024. pp. Chapter 5.1.ISBN 9284304298.
5. National Cancer Registry Report. Malaysia Cancer Statistics- Data and Figure.2007.
6. Thun MJ, Hannan LM, Adams CambellLL ,et al. Lung cancer occurrence in never smokers: an analysis of 13 cohorts and 22 cancer registry studies.PLoSMed.2008;5(9):1185.
7. 0’Reilly KM, Mclaughlin AM, Beckett WS, et al. Asbestos related lung disease American Family Physician.2007; 75(5):683-688.
8. Lung Cancer-patient Version. NCI .Retrieved 5 March 2016.
9. Hom L, Lovly CM, Johnson DH (2015).Chapter 107.Neoplasm of Lung .In Kasper DL ;Hauser, SL, Jameson JL, Fauci AS, Longo DL, Loscalzo J. Harrison’s Principles of Internal Medicine(19th ed.) McGraw- Hill.ISBN 978-0-07-180216-1.
10. Lu C, Onn A, Vaporciyan AA, et al.(2010).78:Cancer of Lung. Holland- Frei Cancer Medicine(8th ed.).People’s Medical Publishing House. ISBN 978-1-60795-014-1.
11. Lung Carcinoma:Tumors of the Lungs. Merck Manual Professional Edition.online edition. Retrieved 15th August 2007.
12. Chapman S, Robinson G, Streadling J, et al (2009).Chapter 31.Oxford Handbook of Respiratory Medicine(2nd ed.) Oxford University Press .ISBN 978-0-19-954516-2.
13. World Cancer Report 2014.World Health Organization. 2014.pp. Chapter 1.1.ISBN 9283204298.
14. Jemal A, Tiwari RC, Murray T, et al. Cancer Statistics 2004.CA:A Cancer Journal for Clinicians.2004;54(1):8-29.
15. Hom L, Lovly CM, Johnson DH (2015). Chapter 107. Neoplasm of Lung. In Kasper DL; Hauser, SL, Jameson JL, Fauci AS, Longo DL, Loscalzo J. Harrison’s Principles of Internal Medicine (19th ed.) McGraw- Hill.ISBN 978-0-07-180216-1.
16. Brown KM, Keats JJ, Sekulie A, et al. (2010). Chapter 8 Holland –Frei Cancer Medicine (8th ed.). People’s Medical Publishing House USA.ISBN 978-1-60795-014-1.
17. Cooper WA, Lam DLC, 0TooleSA.Molecular Biology of lung cancer (PDF). J ThoracDis.2013;5(Suppl 5):S479-90.
18. Tobias J, Hochhauser D (2012). Chapter 12.Cancer and its Management (6th ed.) Wiley-Blackwell.p. 200.ISBN 978-1405-170154.
19. Herbst RS, Heymatch JV, Lippman SM. Lung cancer. NewEngl JMed. 2008; 359(13): 1367-1380.
20. Kumar V, Abbas AK, Aster JC (2013). Chapter 5.Robbins Basic Pathology(9th ed.)Elsevier Saunders.p.212.ISBN 978-1-4377-178-5.
21. Jakopovic, M, Thomas A, Balasubramaniam S .Targeting the epigenomic in lung cancer expanding approaches to epigenetic therapy(PDF).Frontiers in oncology. 2013;3(26).
22. Herbst RS, Heymatch JV, Lippman SM. Lung cancer. NewEngl JMed. 2008; 359(13): 1367-1380.
23. Kumar V, Abbas AK, Aster JC (2013).Chapter 5.Robbins Basic Pathology(9th ed.)Elsevier Saunders.p.212.ISBN 978-1-4377-178-5.
24. Herbst RS, Heymatch JV, Lippman SM. Lung cancer. NewEngl JMed. 2008; 359(13): 1367-1380.
25. Hu S, Hoffman EA, and. Reinhardt JM. Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Transactions on Medical Imaging. 2001; vol. 20(6):490–498,.
26. Ukil S and. Reinhardt JM. Anatomy-guided lung lobe segmentation in X-ray CT images. IEEE Transactions on Medical Imaging. 2009; 28 (2); 202–214.
27. Van Rikxoort EM, De Hoop B, Van De Vorst S, Prokop M, and Van Ginneken B. Automatic segmentation of pulmonary segments from volumetric chest CT scans. IEEE Transactions on Medical Imaging. 2009; 28(4): 621–630,
28. Gao Q, Wang S, Zhao D, and Liu J. Accurate lung segmentation for X-ray CT images,” in Proceedings of the 3rd International Conference on Natural Computation (ICNC ’07). 2007: 2: 275– 279,
29. Hua P, Song Q, Sonka M, Hoffman EA, and Reinhardt JM. Segmentation of pathological and diseased lung tissue in CT images using a graph-search algorithm, in Proceedings of the International Symposium on Biomedical Imaging (ISBI’ 11). 2011; 2072–2075.
30. El-Baz A, Gimel’farb G, and Falk R. A novel three-dimensional framework for automatic lung segmentation from low dose computed tomography images, in Lung Imaging and Computer Aided Diagnosis, A. El-Baz and J. Suri, Eds., chapter 1. 2011; 1–15.
31. El-Baz A, Gimel’farb G, Falk R, Abou El-Ghar M, Holland T and Shaffer T. A new stochastic framework for accurate lung segmentation, in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI ’08). 2008; 322–330.
32. El-Baz A, Gimel’farb G, Falk R, Holland T and Shaffer T. A framework for unsupervised segmentation of lung tissues from low dose computed tomography images,” in Proceedings of the British Machine Vision Conference. 2008: 855–865. University of Leeds, Leeds, UK, September.
33. K. Kanazawa, Y. Kawata, N. Niki et al..Computer-aided diagnosis for pulmonary nodules based on helical CT images,” Computerized Medical Imaging and Graphics. 1998; 22(2):157–167.
34. Trivedi MM and Bezdek JC. Low-level segmentation of aerial images with fuzzy clustering,” IEEE Transactions on Systems, Man and Cybernetics. 1986; 16 (4): 589–598.
35. Mekada Y, Kusanagi T, Hayase Y.et al.. Detection of small nodules from 3D chest X-ray CT images based on shape features, in Proceedings of the Computer Assisted Radiology and Surgery (CARS). 2003; 1256: 971–976,
36. Paik DS, Beaulieu CF, Rubin GD et al. Surface normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT. IEEE Transactions on Medical Imaging. 2004; 23(6):661–675.
37. Li Q, Li F, Suzuki K.et al.. Computer-aided diagnosis in thoracic CT, Seminars in Ultrasound, CT and MRI. 2005; 26(5): 357–363.
38. Li Q. Recent progress in computer-aided diagnosis of lung nodules on thin-section CT,” Computerized Medical Imaging and Graphics. 2007; 31(4-5): 248–257.
39. Goldin JG, Brown MS, and Petkovska I. Computer aided diagnosis in lung nodule assessment. Journal of Thoracic Imaging. 2008: 23(2):97–104.
40. Sluimer I, Schilham A, Prokop M and Van Ginneken B. Computer analysis of computed tomography scans of the lung: a survey. IEEE Transactions on Medical Imaging. 2006; 25(4):385–405.
41. Jaffe CC. Measures of response: RECIST, WHO, and new alternatives. Journal of Clinical Oncology. 2006; 24(20):3245–3251.
42. Gavrielides MA, Kinnard LM, Myers KJ and Petrick N. Noncalcified lung nodules: volumetric assessment with thoracic CT. Radiology.2009; 251(1): 26–37.
43. Lee Y, Hara T, Fujita H, Itoh S and Ishigaki T. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Transactions on Medical Imaging.2001; 20(7):595–604.
44. Brown MS, McNitt-Gray MF, Goldin JG, Suh RD, Sayre JW, and. Aberle DR. Patient-specific models for lung nodule detection and surveillance in CT images. IEEE Transactions on Medical Imaging. 2001; 20(12): 1242–1250.
45. Armato SG, Li F, Giger ML, MacMahon H, Sone S and Doi K. Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program, Radiology. 2002; 225(3):685–692.
46. Suzuki K, Shiraishi J, Abe H, MacMahon H, and Doi K. False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Academic Radiology.2005; 12(2):191–201.
47. Kawata Y, Niki N, Ohmatsu H et al. Classification of pulmonary nodules in thin-section CT images based on shape characterization, in Proceedings of the International Conference on Image Processing (ICIP ’97). 1997; 3 (2) (of 3): 528–530.
48. Gonzalez RC and Woods RE. Digital Image Processing, Prentice Hall, 3rd edition, 2007.
49. Gonzalez RC and Woods RE. Digital Image Processing, Prentice Hall, 3rd edition, 2007.
50. Kass M, Witkin A, and Terzopoulos D. Snakes: active contour models. International Journal of Computer Vision.1988; 1(4):321–331.
51. Caselles V, Kimmel R, and Sapiro G. Geodesic Active Contours,” International Journal of Computer Vision. 1997; 22(1): 61–79.
52. Chan TF and Vese LA. Active contours without edges. IEEE Transactions on Image Processing. 2001; 10(2):266–277.
53. Amini AA, Weymouth TE and Jain RC. Using dynamic programming for solving variational problems in vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence. 1990; 12(9):855–867.
54. Lee Y, Hara T, Fujita H, Itoh S and Ishigaki T. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Transactions on Medical Imaging. 2001; 20(7):595–604
55. Duda RO, Hart PE and Stork DG, Pattern Classification, Wiley Interscience, New Jersey, NJ, USA, 2nd edition, 2001
56. Duda, RO, Hart PE and. Stork DG, Pattern Classification, Wiley Interscience, New Jersey, NJ, USA, 2nd edition, 2001
57. Comaniciu D and Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence.2002; 24 (5): 603–619.
58. Boykov Y, Veksler O, and Zabih R, Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence.2001; 23(11): 1222–1239.
59. Gonzalez RC and Woods RE, Digital Image Processing, Prentice Hall, 3rd edition, 2007.
60. Steenbakkers RJHM, Duppen JC, Fitton I et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. International Journal of Radiation Oncology Biology Physics. 2006; 64 (2): 435–448.
61. Fox JL, Rengan R, OMeara W et al. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? International Journal of Radiation Oncology Biology Physics.2005; 62(1): 0–75.
62. Henschke CI, McCauley DI, Yankelevitz DF et al. Early lung cancer action project: overall design and findings from baseline screening. The Lancet. 1999; 354 (9173): 99–105.
63. Kostis WJ, Reeves AP, Yankelevitz DF, and Henschke CI. Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. IEEE Transactions on Medical Imaging. 2003; 22(10):1259–1274.
64. Fetita CI, Prteux F, Beigelman-Aubry C and Grenier P. 3D automated lung nodule segmentation in HRCT in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI ’03). 2003; 2878: 626–634.
65. Zhang L, Fang M, Naidich DP and Novak CL. Consistent interactive segmentation of pulmonary ground glass nodules identified in CT studies in Medical Imaging: Imaging Processing, Proceedings of SPIE. 2004; 1709–1719.
66. Zhao B, Reeves AP, Yankelevitz DF and Henschke CI. Three-dimensional multicriterion automatic segmentation of pulmonary nodules of helical computed tomography images. Optical Engineering. 1999; 38(8): 1340–1347.
67. Kuhnigk JM, Dicken V, Bornemann L et al. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans,” IEEE Transactions on Medical Imaging. 2006; 25(4): 417–434.
68. Reeves AP, Chan AB, Yankelevitz DF, Henschke CI, Kressler B and Kostis WJ. On measuring the change in size of pulmonary nodules. IEEE Transactions on Medical Imaging. 2006; 25(4): 435–450.
69. Fetita CI, Prteux F, Beigelman-Aubry C and Grenier P. 3D automated lung nodule segmentation in HRCT in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI ’03).2003; 2878: 626–634,
70. Zhao B, Reeves AP, Yankelevitz DF and Henschke CI. Three-dimensional multicriterion automatic segmentation of pulmonary nodules of helical computed tomography images. Optical Engineering.1999; 38 (8): 1340–1347.
71. Kostis WJ, Reeves AP, Yankelevitz DF and Henschke CI. Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. IEEE Transactions on Medical Imaging. 2003; 22(10):1259–1274.
72. Fetita CI, Prteux F, Beigelman-Aubry C and Grenier P. 3D automated lung nodule segmentation in HRCT,” in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI ’03). 2003: 2878: 626–634.
73. Kuhnigk JM, Dicken V, Bornemann L et al. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Transactions on Medical Imaging. 2006; 25(4): 417–434.
74. Shen H, Goebel B and Odry B. A new algorithm for local surface smoothing with application to chest wall nodule segmentation in lung CT data in Medical Imaging: Imaging Processing. 2004; 5370; 1519–1526.
75. Okada K, Ramesh V, Krishnan A, Singh M and Akdemir U. Robust pulmonary nodule segmentation in CT: improving performance for juxtapleural cases in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI ’05). 2005; 8:781–789.
76. Jirapatnakul YD, Mulman YD, Reeves AP, Yankelevitz DF and Henschke CI. Segmentation of juxtapleural pulmonary nodules using a robust surface estimate. International Journal of Biomedical Imaging. 2011; 14
77. Reeves AP, Chan AB, Yankelevitz DF, Henschke CI, Kressler B and Kostis WJ. On measuring the change in size of pulmonary nodules,” IEEE Transactions on Medical Imaging, vol. 25, no. 4, pp. 435–450, 2006.
78. Kostis WJ, Reeves AP, Yankelevitz DF and Henschke CI. Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images,” IEEE Transactions on Medical Imaging. 2003; 22(10): 1259–1274.
79. Okada K, Ramesh V, Krishnan A, Singh M and Akdemir U. Robust pulmonary nodule segmentation in CT: improving performance for juxtapleural cases in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI ’05).2005; 8: 781–789.
80. Jirapatnakul YD, Mulman YD, Reeves AP, Yankelevitz DF and Henschke CI. Segmentation of juxtapleural pulmonary nodules using a robust surface estimate. International Journal of Biomedical Imaging.2011; Article ID 632195, 14 pages.
81. Reeves AP, Chan AB, Yankelevitz DF, Henschke CI, Kressler B and Kostis WJ. On measuring the change in size of pulmonary nodules. IEEE Transactions on Medical Imaging. 2006; 25(4): 435–450.
82. Okada K, Singh M, and Ramesh V. Prior-constrained scale space mean shift,” in Proceedings of the British Machine Vision Conference. 2006; 829–838,
83. T Kubota, Jerebko AK, Dewan M, Salganicoff M and Krishnan A. Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models. Medical Image Analysis.2011; 15(1):133–154.
84. Farag AA, Abdelmunim H, Graham J et al. Variational approach for segmentation of lung nodules in Proceedings of the IEEE International Conference on Image Processing (ICIP ’11). 2011; 2157–2160,
85. Min JH, Lee HY, Lee KS et al. Stepwise evolution from a focal pure pulmonary ground-glass opacity nodule into an invasive lung adenocarcinoma: an observation for more than 10 years. Lung Cancer. 2010; 69(1):123–126.
86. Fetita CI, Prteux F, Beigelman-Aubry C and Grenier P. 3D automated lung nodule segmentation in HRCT in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI ’03).2003; 2878: 626–634.
87. Mullally W, Betke M, Wang J and Ko JP. Segmentation of nodules on chest computed tomography for growth assessment. Medical Physics.2004; 31(4):839–848.
88. Zhou J, Chang S, Metaxas DN, Zhao B, Ginsberg MS and Schwartz LH. An automatic method for ground-glass opacity nodule detection and segmentation from CT studies in Proceedings of the 29th IEEE Annual International Conference of Medicine and Biology Society (EMBS ’06). 2006; 1:3062–3065.
89. Zhou J, Chang S, Metaxas DN, Zhao B, Schwartz LH and Ginsberg MS. Automatic detection and segmentation of ground-glass opacity nodules in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI ’06). 2006; 9:784–791.
90. Tao Y, Lu L, Dewan M et al. Multi-level ground glass nodule detection and segmentation in CT lung images in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI ’09). 2009: 1: 715– 723.
91. Fetita CI, Prteux F, Beigelman-Aubry C and Grenier P. 3D automated lung nodule segmentation in HRCT,” in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI ’03).2003; 2878P: 626–634.
92. Mullally W, Betke M, Wang J, and Ko JP. Segmentation of nodules on chest computed tomography for growth assessment. Medical Physics.2004; 31( 4): 839–848.
93. Okada K, Comaniciu D and Krishnan A. Robust anisotropic Gaussian fitting for volumetric characterization of pulmonary nodules in multislice CT. IEEE Transactions on Medical Imaging. 2005; 24(2): 409–423.
94. Jirapatnakul YD, Mulman YD, Reeves AP, Yankelevitz DF and Henschke CI. Segmentation of juxtapleural pulmonary nodules using a robust surface estimate. International Journal of Biomedical Imaging. 2011; Article ID 632195, 14 pages.
95. Jirapatnakul AC, Fotin SV, Reeves AP, Biancardi AM, Yankelevitz DF and Henschke CI. Automated nodule location and size estimation using a multi-scale Laplacian of Gaussian filtering approach in Proceedings of the 29th IEEE Annual International Conference of Medicine and Biology Society (EMBS ’09).2009; 1028–1031.
96. Diciotti S, Lombardo S, Coppini G, Grassi L, Falchini M and Mascalchi M. The LOG characteristic scale: a consistent measurement of lung nodule size in CT imaging. IEEE Transactions on Medical Imaging. 2010; 29(2): 397–409.
97. Metz CE. ROC methodology in radiologic imaging. Investigative Radiology. 1986; 21(9); 720–733.
98. Hanley JA and McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology.1983;148(3):839–843.
99. Yankelevitz DF, Gupta R, Zhao B and Henschke CI. Small pulmonary nodules: evaluation with repeat CT—preliminary experience. Radiology.1999; 212(2): 561–566.
100. Yankelevitz DF, Reeves AP, Kostis WJ, Zhao B and Henschke CI. Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology. 2000; 217 (1): 251–256.
101. Jaffe CC. Measures of response: RECIST, WHO, and new alternatives,” Journal of Clinical Oncology.2006; 24(20): 3245–3251.
102. Kostis WJ, Yankelevitz DF, Reeves AP, Fluture SC and Henschke CI. Small pulmonary nodules, reproducibility of three-dimensional volumetric measurement and estimation of time to follow-up CT. Radiology. 2004; 231(2):446–452.
103. Goo JM, Tongdee T, Tongdee R, Yeo K, Hildebolt CF and Bae KT. Volumetric measurement of synthetic lung nodules with multi-detector row CT: effect of various image reconstruction parameters and segmentation thresholds on measurement accuracy. Radiology. 2005; 235(3): 850–856.
104. Gietema HA, Schaefer-Prokop CM, Mali WPTM, Groenewegen G and Prokop M. Pulmonary nodules: interscan variability of semiautomated volume measurements with multisection CT – Influence of inspiration level, nodule size, and segmentation performance. Radiology. 2007; 245(3): 889–894.
105. Das M, Ley-Zaporozhan J, Gietema HA et al. Accuracy of automated volumetry of pulmonary nodules across different multislice CT scanners. European Radiology. 2007; 17(8): 1979–1984.
106. Tao P, Griess F, Lvov Y et al. Characterization of small nodules by automatic segmentation of X-ray computed tomography images. Journal of Computer Assisted Tomography. 2004; 28(3): 372–377.
107. Petrou M, Quint LE, Nan B, and Baker LH. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology. American Journal of Roentgenology.2007; 188(2):306–312.
108. Park CM, Goo JM, Lee HJ, Kim KG, Kang MJ and Shin YH. Persistent pure ground-glass nodules in the lung: interscan variability of semiautomated volume and attenuation measurements. American Journal of Roentgenology.2010; 195(6): W408–W414.
109. Boll DT, Gilkeson RC, Fleiter TR, Blackham KA, Duerk JL and Lewin JS. Volumetric assessment of pulmonary nodules with ECG-gated MDCT. American Journal of Roentgenology. 2004; 183(5):1217–1223,
110. Gietema HA, Schaefer-Prokop CM, Mali WPTM, Groenewegen G and Prokop M. Pulmonary nodules: interscan variability of semiautomated volume measurements with multisection CT – Influence of inspiration level, nodule size, and segmentation performance. Radiology. 2007; 245(3):889–894.
111. Way TW, Chan HP, Goodsitt MM et al. Effect of CT scanning parameters on volumetric measurements of pulmonary nodules by 3D active contour segmentation: a phantom study. Physics in Medicine and Biology.2008; 53(5):1295–1312.
112. Goo JM, Tongdee T, Tongdee R, Yeo K, Hildebolt CF, and Bae KT. Volumetric measurement of synthetic lung nodules with multi-detector row CT: effect of various image reconstruction parameters and segmentation thresholds on measurement accuracy. Radiology. 2005; 235(3): 850–856.
113. Ravenel JG, Leue WM, Nietert PJ, Miller JV, Taylor KK and Silvestri GA. Pulmonary nodule volume: effects of reconstruction parameters on automated measurements—a phantom study. Radiology.2008; 247(2): 400–408.
114. Tao P, Griess F, Lvov Y et al. Characterization of small nodules by automatic segmentation of X-ray computed tomography images. Journal of Computer Assisted Tomography. 2004; 28(3):372–377.
115. Petrou M, Quint LE, Nan B, and Baker LH. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology. American Journal of Roentgenology. 2007; 188(2):306–312.
116. Honda O, Sumikawa H, Johkoh T et al. Computer-assisted lung nodule volumetry from multi-detector row CT: influence of image reconstruction parameters, European Journal of Radiology. 2007; 62(1):106–113.
117. Ko JP, Rusinek H, Jacobs EL et al. Small pulmonary nodules: volume measurement at chest CT—phantom study. Radiology. 2003; 228(3):864–870.
118. Way TW, Chan HP, Goodsitt MM et al. Effect of CT scanning parameters on volumetric measurements of pulmonary nodules by 3D active contour segmentation: a phantom study. Physics in Medicine and Biology. 2008; 53(5):1295–1312.
119. Honda O, Sumikawa H, Johkoh T et al. Computer-assisted lung nodule volumetry from multi-detector row CT: influence of image reconstruction parameters. European Journal of Radiology. 2007; 62(1): 106–113.
120. Park CM, Goo JM, Lee HJ, Kim KG, Kang MJ and Shin YH. Persistent pure ground-glass nodules in the lung: interscan variability of semiautomated volume and attenuation measurements. American Journal of Roentgenology. 2010; 195(6): W408–W414.
121. Ravenel JG, Leue WM, Nietert PJ, Miller JV, Taylor KK and Silvestri GA. Pulmonary nodule volume: effects of reconstruction parameters on automated measurements—a phantom study. Radiology.2008; 247(2):400–408.
122. Ko JP, Rusinek H, Jacobs EL et al. Small pulmonary nodules: volume measurement at chest CT—phantom study. Radiology. 2003; 228(3):864–870.
123. Way TW, Chan HP, Goodsitt MM et al. Effect of CT scanning parameters on volumetric measurements of pulmonary nodules by 3D active contour segmentation: a phantom study. Physics in Medicine and Biology. 2008; 53(5):1295–1312.
124. Hein PA, Romano VC, Rogalla P et al. Variability of semiautomated lung nodule volumetry on ultralow-dose ct: comparison with nodule volumetry on standard-dose CT. Journal of Digital Imaging. 2010; 23(1):8–17.
125. Das M, Ley-Zaporozhan J, Gietema HA et al. Accuracy of automated volumetry of pulmonary nodules across different multislice CT scanners. European Radiology.2007; 17(8):979–1984.
126. Goo JM, Tongdee T, Tongdee R, Yeo K, Hildebolt CF, and Bae KT. Volumetric measurement of synthetic lung nodules with multi-detector row CT: effect of various image reconstruction parameters and segmentation thresholds on measurement accuracy. Radiology. 2005; 235(3): 850–856.
127. Lee MC, Wiemker R, Boroczky L et al. Impact of segmentation uncertainties on computer-aided diagnosis of pulmonary nodules,” International Journal of Computer Assisted Radiology and Surgery. 2008; 3(6): 551–558.
128. Ko JP, Rusinek H, Jacobs EL et al. Small pulmonary nodules: volume measurement at chest CT—phantom study. Radiology. 2003; 228(3): 864–870.
129. Lee MC, Wiemker R, Boroczky L et al. Impact of segmentation uncertainties on computer-aided diagnosis of pulmonary nodules. International Journal of Computer Assisted Radiology and Surgery. 2008; 3(6):551–558.
130. Das M, Ley-Zaporozhan J, Gietema HA et al. Accuracy of automated volumetry of pulmonary nodules across different multislice CT scanners. European Radiology. 2007; 17( 8) :1979–1984.
131. Sone S, Tsushima K, Yoshida K, Hamanaka K, Hanaoka T and Kondo R. Pulmonary Nodules. Preliminary Experience with Semiautomated Volumetric Evaluation by CT Stratum. Academic Radiology. 2010; 17(7):900–911.
132. Ashraf H, de Hoop B, Shaker SB et al. Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably,” European Radiology. 2010; 20(8):1878–1885.
133. Furuya K, Murayama S, Soeda H et al. New classification of small pulmonary nodules by margin characteristics on high resolution CT. Acta Radiologica.1999; 40(5):496–504.
134. Kawata Y, Niki N, Ohmatsu H et al. Computerized analysis of 3-D pulmonary nodule images in surrounding and internal structure feature spaces, in Proceedings of IEEE International Conference on Image Processing (ICIP ’01). 2001; 2: 889–892.
135. McNitt-Gray MF, Hart EM, Wyckoff N, Sayre JW, Goldin JG and Aberle DR. A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: preliminary results. Medical Physics.1999; 26(6):880–888.
136. Shah SK, McNitt-Gray MF, Rogers SR et al. Computer aided diagnosis of the solitary pulmonary nodule. Academic Radiology. 2005; 12(5):570–575.
137. Iwano S, Nakamura T, Kamioka Y, and Ishigaki T. Computer-aided diagnosis: a shape classification of pulmonary nodules imaged by high-resolution CT. Computerized Medical Imaging and Graphics. 2005; 29(7):565–570.
138. Dewan NA, Gupta NC, Redepenning LS, Phalen JJ and Frick MP. Diagnostic efficacy of PET-FDG imaging in solitary pulmonary nodules: potential role in evaluation and management. Chest. 1993; 104(4): 997–1002.
139. Gupta NC, Maloof J, and Gunkel E. Probability of Malignancy in Solitary Pulmonary Nodules Using Fluorine-18-FDG and PET. Journal of Nuclear Medicine.1996; 37(6): 943–948.
140. Lowe VJ, Fletcher JW, Gobar L et al. Prospective investigation of positron emission tomography in lung nodules. Journal of Clinical Oncology.1998;16(3):1075–1084.
141. Lee J, Aronchick JM, and Alavi A. Accuracy of F-18 fluorodeoxyglucose positron emission tomography for the evaluation of malignancy in patients presenting with new lung abnormalities: a retrospective review. Ches. 2001; 120(6):1791–1797.
142. Herder GJ, Golding RP, Hoekstra OS et al. The performance of 18F-fluorodeoxyglucose positron emission tomography in small solitary pulmonary nodules. European Journal of Nuclear Medicine and Molecular Imaging.2004; 31(9):31– 1236.
143. Halley A, Hugentobler A, Icard P et al. Efficiency of 18F-FDG and 99mTc-depreotide SPECT in the diagnosis of malignancy of solitary pulmonary nodules. European Journal of Nuclear Medicine and Molecular Imaging. 2005; 32(9):1026–1032.
144. Erasmus JJ, McAdams HP and Connolly JE. Solitary pulmonary nodules: part II. Evaluation of the indeterminate nodule. Radiographic.2000; 20(1): 59–66.
145. Goo JM, Im JG, Do KH et al. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology. 2000; 216(1):117-1212.
146. Keidar Z, Haim N, Guralnik L et al. PET/CT using 18F FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. Journal of Nuclear Medicine. 2004; 45(10):1640–1646.
147. Yi CA, Kyung SL, Kim BT et al. Tissue characterization of solitary pulmonary nodule: comparative study between helical dynamic CT and integrated PET/CT. Journal of Nuclear Medicine. 2006; 47(3):443–450.
148. Nie Y, Li Q, Li F, Pu Y, Appelbaum D and Doi K. Integrating PET and CT information to improve diagnostic accuracy for lung nodules: a semiautomatic computer-aided method. Journal of Nuclear Medicine. 2006; 47(7):1075–1080, 2006.
149. Nakamoto Y, Senda M, Okada T. et al. Software-based fusion of PET and CT images for suspected recurrent lung cancer. Molecular Imaging and Biology. 2008; 10 (3): 147–153.
150. Lardinois D, Weder W, Hany TF et al. Staging of non-small cell lung cancer with integrated positron-emission tomography and computed tomography. The New England Journal of Medicine.2003; 348(25):2500–2507.
151. Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer 2017;17:637-58.
152. Blakely CM, Pazarentzos E, Olivas V, et al. NF-kappaBactivating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep 2015;11:98-110.
153. Imielinski M, Berger AH, Hammerman PS, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012;150:1107-20.
154. Steuer CE, Ramalingam SS. Tumor mutation burden: leading immunotherapy to the era of precision medicine? J Clin Oncol 2018;36:631-2.
155. Attarian S, Rahman N, Halmos B. Emerging uses of biomarkers in lung cancer management: molecular mechanisms of resistance. Ann Transl Med 2017;5:377.
156. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127-37.
157. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511:543-50.
158. Marchetti A, Felicioni L, Malatesta S, et al. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol 2011;29:3574-9.
159. Planchard D, Besse B, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol 2016;17:984-93.
160. Rangarajan A, Hong SJ, Gifford A, et al. Species- and cell type-specific requirements for cellular transformation. Cancer Cell 2004;6:171-83.
161. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511:543-50.
162. Kim J, McMillan E, Kim HS, et al. XPO1-dependent nuclear export is a druggable vulnerability in KRASmutant lung cancer. Nature 2016;538:114-7.
163. Wang J, Hu K, Guo J, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun 2016;7:11363.
164. Nichols RJ, Haderk F, Stahlhut C, et al. Efficacy of SHP2 phosphatase inhibition in cancers with nucleotide-cycling oncogenic RAS, RAS-GTP dependent oncogenic BRAF and NF1 loss. BioRxiv. 2017. Available online: https:// www.biorxiv.org/content/early/2017/09/14/188730.
165. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511:543-50.
166. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007;448:561-6.
167. Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer 2017;17:637-58.
168. Peters S, Camidge DR, Shaw AT, et al. Alectinib versus Crizotinib in Untreated ALK-positive non-small-cell lung cancer. N Engl J Med 2017;377:829-38.
169. Lin JJ, Kennedy E, Sequist LV, et al. Clinical activity of alectinib in advanced RET-rearranged non-small cell lung cancer. J Thorac Oncol 2016;11:2027-32.
170. George J, Lim JS, Jang SJ, et al. Comprehensive genomic profiles of small cell lung cancer. Nature 2015;524:47-53.
171. Zhang J, Zhang L, Su X, et al. Translating the therapeutic potential of AZD4547 in FGFR1-amplified non-small cell lung cancer through the use of patient-derived tumor xenograft models. Clin Cancer Res 2012;18:6658-67.
172. Paik PK, Shen R, Berger MF, et al. A Phase Ib OpenLabel Multicenter Study of AZD4547 in patients with advanced squamous cell lung cancers. Clin Cancer Res 2017;23:5366-73.
173. Nogova L, Sequist LV, Perez Garcia JM, et al. Evaluation of BGJ398, a Fibroblast Growth Factor Receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase i, dose-escalation and dose-expansion study. J Clin Oncol 2017;35:157-65.
174. Lim SH, Sun JM, Choi YL, et al. Efficacy and safety of dovitinib in pretreated patients with advanced squamous non-small cell lung cancer with FGFR1 amplification: A single-arm, phase 2 study. Cancer 2016;122:3024-31.
175. Paik PK, Shen R, Berger MF, et al. A Phase Ib OpenLabel Multicenter Study of AZD4547 in patients with advanced squamous cell lung cancers. Clin Cancer Res 2017;23:5366-73.
176. Pleasance ED, Cheetham RK, Stephens PJ, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 2010;463:191-6.
177. Jin G, Kim MJ, Jeon HS, et al. PTEN mutations and relationship to EGFR, ERBB2, KRAS, and TP53 mutations in non-small cell lung cancers. Lung Cancer 2010;69:279-83.
178. Paik PK, Shen R, Berger MF, et al. A Phase Ib OpenLabel Multicenter Study of AZD4547 in patients with advanced squamous cell lung cancers. Clin Cancer Res 2017;23:5366-73.
179. Xu C, Fillmore CM, Koyama S, et al. Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell 2014;25:590-604.
180. Lastwika KJ, Wilson W 3rd, Li QK, et al. Control of PD-L1 Expression by Oncogenic Activation of the AKTmTOR pathway in non-small cell lung cancer. Cancer Res 2016;76:227-38.
181. Dickson MA, Schwartz GK. Development of cell-cycle inhibitors for cancer therapy. Curr Oncol 2009;16:36-43.
182. Nichols RJ, Haderk F, Stahlhut C, et al. Efficacy of SHP2 phosphatase inhibition in cancers with nucleotide-cycling oncogenic RAS, RAS-GTP dependent oncogenic BRAF and NF1 loss. BioRxiv. 2017.
183. Farago AF, Le LP, Zheng Z, et al. Durable Clinical Response to Entrectinib in NTRK1-rearranged non-small cell lung cancer. J Thorac Oncol 2015;10:1670-4.
184. Kobayashi Y, Mitsudomi T. Not all epidermal growth factor receptor mutations in lung cancer are created equal: Perspectives for individualized treatment strategy. Cancer Sci 2016;107:1179-86.
185. Huang Q, Schneeberger VE, Luetteke N, et al. PreclinicalModeling of KIF5B-RET Fusion Lung Adenocarcinoma. Mol Cancer Ther 2016;15:2521-9.
186. Ramazzotti, D.; Lal, A.; Wang, B.; Batzoglou, S.; Sidow, A. Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival. Nat. Commun. 2018, 9, 4453. [CrossRef]
187. Chaudhary, K.; Poirion, O.B.; Lu, L.; Garmire, L.X. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clin. Cancer Res. 2018, 24, 1248–1259.
188. Yuan, C.; Yang, H. Research on K-Value Selection Method of K-Means Clustering Algorithm. J—Multidiscip. Sci. J. 2019, 2, 16.
189. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 13.
190. Calinski, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. – Theory Methods 1974, 3, 27.
191. Laurens van der Maaten, G.H. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
192. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47.
193. Anaya, J. OncoLnc: Linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. Peer J. Comput. Sci. 2016, 2, 11.
194. Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7:169–181.
195. Kosaka T, et al. (2004) Mutations of the epidermal growth factor receptor gene in lung cancer: Biological and clinical implications. Cancer Res 64:8919–8923.
196. Yun CH, et al. (2007) Structures of lung cancer-derived EGFR mutants and inhibitor complexes: Mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11:217–227.
197. Jura N, et al. (2011) Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol Cell 42:9–22.
198. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptors. Cell 125:1137– 1149.
199. Jänne PA, Johnson BE (2006) Effect of epidermal growth factor receptor tyrosine kinase domain mutations on the outcome of patients with non-small cell lung cancer treated with epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res 12:4416s–4420s.
200. Mitsudomi T, Yatabe Y (2007) Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci 98:1817–1824.
201. Sequist LV, et al. (2013) Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 31: 3327–3334.
202. Cross DA, et al. (2014) AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 4:1046–1061.
203. Mok TS, et al. (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957.
204. Ramalingam SS, et al. (2018) Osimertinib as first-line treatment of EGFR mutation positive advanced non-small-cell lung cancer. J Clin Oncol 36:841–849.
205. Yasuda H, Kobayashi S, Costa DB (2012) EGFR exon 20 insertion mutations in non small-cell lung cancer: Preclinical data and clinical implications. Lancet Oncol 13:e23– e31.
206. Kosaka T, et al. (2017) Response heterogeneity of EGFR and HER2 exon 20 insertions to covalent EGFR and HER2 inhibitors. Cancer Res 77:2712–2721.
207. Arcila ME, et al. (2013) EGFR exon 20 insertion mutations in lung adenocarcinomas: Prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther 12:220-229.
208. Ruan Z, Kannan N (2018) Altered conformational landscape and dimerization dependency underpins the activation of EGFR by αC-β4 loop insertion mutations. Proc Natl Acad Sci USA 115:E8162–E8171.
209. Shan Y, Arkhipov A, Kim ET, Pan AC, Shaw DE (2013) Transitions to catalytically inactive conformations in EGFR kinase. Proc Natl Acad Sci USA 110:7270–7275.
210. Ruan Z, Katiyar S, Kannan N (2017) Computational and experimental characterization of patient derived mutations reveal an unusual mode of regulatory spine assembly and drug sensitivity in EGFR kinase. Biochemistry 56:22–32.
211. Wang DD, Zhou W, Yan H, Wong M, Lee V (2013) Personalized prediction of EGFR mutation-induced drug resistance in lung cancer. Sci Rep 3:2855.
212. Ma L, et al. (2015) EGFR mutant structural database: Computationally predicted 3D structures and the corresponding binding free energies with gefitinib and erlotinib. BMC Bioinformatics 16:85.
213. Ruiz-Carmona S, et al. (2014) rDock: A fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 10:e1003571.
214. Araki M, et al. (2016) The effect of conformational flexibility on binding free energy estimation between kinases and their inhibitors. J Chem Inf Model 56:2445–2456.
215. Brown JB, Nakatsui M, Okuno Y (2014) Constructing a foundational platform driven by Japan’s K supercomputer for next-generation drug design. Mol Inform 33:732–741.
216. Nakaoku T, et al. (2018) A secondary RET mutation in the activation loop conferring resistance to vandetanib. Nat Commun 9:625.
217. Katayama R, et al. (2014) Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin Cancer Res 20:5686–5696.
218. Biankin AV, Piantadosi S, Hollingsworth SJ (2015) Patient-centric trials for therapeutic development in precision oncology. Nature 526:361–370.
219. Hirano T, et al. (2015) In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer.Oncotarget 6:38789–38803.
220. Wang DD, Zhou W, Yan H, Wong M, Lee V (2013) Personalized prediction of EGFR mutation-induced drug resistance in lung cancer. Sci Rep 3:2855.
221. Ma L, et al. (2015) EGFR mutant structural database: Computationally predicted 3D structures and the corresponding binding free energies with gefitinib and erlotinib. BMC Bioinformatics 16:85.
222. Ruiz-Carmona S, et al. (2014) rDock: A fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 10:e1003571.
223. Ruiz-Carmona S, et al. (2014) rDock: A fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 10:e1003571.
224. Miller BR, 3rd, et al. (2012) MMPBSA.py: An efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321.
225. Wang DD, Zhou W, Yan H, Wong M, Lee V (2013) Personalized prediction of EGFR mutation-induced drug resistance in lung cancer. Sci Rep 3:2855.
226. Ma L, et al. (2015) EGFR mutant structural database: Computationally predicted 3D structures and the corresponding binding free energies with gefitinib and erlotinib. BMC Bioinformatics 16:85.