Abstract :
This paper offers a comprehensive account on the emerging concepts and practices in post-harvest management of horticultural crops. Post-harvest science and technology facilitates the industries to deliver safe, nutritious and fresh horticultural products to consumers at the end of the supply chain from farm to mouth. Substantial food wastages, which occur in the post-harvest period and such losses, could be reduced by improved post-harvest research, advancement, training and education. At present, many novel technologies and techniques are already being implemented to reduce the post-harvest losses which are witnessed at harvesting, during packing and transportation, in wholesale and retail markets, and during delays at various levels of handling. Improvements are also required to minimize the losses effectively and keep the process-cost low so that it could be applicable at commercial scale in a wide range of economic levels. By developing the practices utilized at post-harvest phase, the expenses accompanying for additional processing paces could also be reduced. Future studies should also be focused on incorporating various emerging technologies with post-harvest practices and appropriate improved practices should be adopted to an existing value chain and marketing system.
Keywords :
Food Wastages, Marketing System, Post-Harvest Technology, Value ChainReferences :
1. SOFA-The state of Food and Agriculture. (2019). How to reduce food loss and waste for food security and environmental sustainability, FAO Agricultural Development Economics, Policy Brief-19.
2. Reitemeier, M.; Aheeyar, M.; Drechsel, P., (2021). Perceptions of Food Waste Reduction in Sri Lanka’s Commercial Capital, Colombo. Sustainability 2021, 13, 838. https://doi.org/10.3390/su13020838
3. Karunarathna, A., Singh, R.K., Rajapaksha, T., Premakumara, D.G.J., Onogawa, K. (2019). State of Municipal Solid Waste Management in Negombo City, Sri Lanka; United Nations Environment Program.
4. Sandaruwani, J.A.R.C., Gnanapala, W.K.A.C. (2016). Food wastage and its impacts on sustainable business operations: A study on Sri Lankan tourist hotels. Procedia Food Sci. 2016, 6, 133–135. https://doi.org/10.1016/j.profoo.2016.02.031
5. Han, J.W., Ruiz-Garcia, L., Qian, J.P., Yang, X.T. (2018). Food packaging: a comprehensive review and future trends. Compr Rev Food Sci Food Saf 17:860–877. https://doi.org/10.1111/1541-4337.12343
6. Yahia, E.M. (2008). The role of postharvest technology in improving nutrition and promoting national development in developing countries: Constraints and challenges. In Using Food Science and Technology to Improve Nutrition and Promote National Development; Robertson, G.L., Lupien, J.R., Eds.; International Union of Food Science &Technology: Toronto, ON, Canada.
7. Stathers, T., Holcroft, D., Kitinoja, L., Mvumi, B., English, A., & Omotilewa, O. et al. (2020). A scoping review of interventions for crop postharvest loss reduction in sub-Saharan Africa and South Asia. Nature Sustainability, 3(10), 821-835. https://doi.org/10.1038/s41893-020-00622-1
8. Kitinoja, L., Barrett, D.M. (2015). Extension of Small-Scale Postharvest Horticulture Technologies – A Model Training and Services Center. Agriculture 5, 441-455. https://doi.org/10.3390/agriculture5030441
9. Kitinoja, L., Saran, S., Roy, S., & Kader, A. (2011). Postharvest technology for developing countries: challenges and opportunities in research, outreach and advocacy. Journal of the Science of Food and Agriculture, 91(4), 597-603. https://doi.org/10.1002/jsfa.4295
10. Stucki M., Blignaut A. (2018) Greening Agri-food Value Chains in Emerging Economies. In: Benetto E., Gericke K., Guiton M. (eds) Designing Sustainable Technologies, Products and Policies. Springer, Cham. https://doi.org/10.1007/978-3-319-66981-6_13
11. Hilmi, M. (2019). Green food value chain development: Learning from the bottom of the pyramid, Middle East Journal of Agriculture Research, 8(2): 542-560.
12. Badmus, A. A., Gauri, S., Ali, N. I., and Gomes, C. (2015). Mechanical Stability of Bio based Food Packaging Material, Food Science and Quality Management, Vol.39, pp 41-48, 2015
13. Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., Beas I. N. (2020). Environmental Impact of food packaging materials: A review of contemporary development from conventional plastics to polylactic acid based materials, Materials 2020, 13, 4994. https://doi.org/10.3390/ma13214994
14. Mahajan, P., Caleb, O., Singh, Z., Watkins, C., & Geyer, M. (2014). Postharvest treatments of fresh produce. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2017),
20130309. https://doi.org/10.1098/rsta.2013.0309
15. Qadri, R., Azam, M., Khan, I., Yang, Y., Ejaz, S., Akram, M., & Khan, M. (2020). Conventional and Modern Technologies for the Management of Post-Harvest Diseases. Sustainability in Plant and Crop Protection, 137-172.
https://doi.org/10.1007/978-3-03035955-3_7
16. Manli, Z., Youwei, H., Yi, L., Tirong, R., Hao, L., Junbin, H., Daohong, J., Tom, H., Lu, Z. (2020). Two new biocontrol agents against clubroot caused by Plasmodiophora Brassicae, Frontiers in Microbiology, Front. Microbiol. 10:3099.10.3389/fmicb.2019.03099
17. Sohail. M, Sun D. W., Zhu, Z. (2018). Recent developments in intelligent packaging for enhancing food quality, and safety. Crit Rev Food Sci Nutr 7:1–13. https://doi.org/10.1080/10408398.2018.1449731
18. Chen, S., Brahma, S., Mackay, J., Cao, C., Aliakbarian, B. (2020). The role of smart packaging system in food supply chain, Journal of food science, 85(3), 517-525. https://doi.org/10.1111/1750-3841.15046
19. Hutton, T., 2003: Food packaging: an introduction. 7th edition, Gloucestershire, UK: Campden and Chorley wood Food Research Association Group, 108 p. ISBN 978090594612.
20. Ghaani, M., C. A. G. Castelli, Farris, S. (2016). An overview of the intelligent packaging technologies in the food sector, Trends in Food Science & Technology, 51, 1-11. https://doi.org/10.1016/j.tifs.2016.02.008.
21. Yam, K., Takhistov, P., & Miltz, J. (2005). Intelligent Packaging: Concepts and Applications. Journal of Food Science, 70(1), R1-R10. https://doi.org/10.1111/j.13652621.2005.tb09052.x
22. Karel, M., 2000: Tasks of food technology in the 21st century. Food Technology, Vol. 54, p. 56–64. ISSN 0015-6639.
23. Rodrigues, E. T. and Han, J. H., 2003: Intelligent packaging. In: Heldman, D. R. and Moraru, C. I. (Ed.). Encyclopaedia of Agricultural, Food and Biological Engineering. 2nd edition, New York: Marcel Dekker, pp. 528–535. ISBN 978-1439811115.
24. Han, J. H., Ho, C. H. L. and Rodrgue, E. T., 2005: Intelligent packaging. In: Han, J. H. Innovation in Food packaging. UK, London: Elsevier Academic Press, p. 138–155. ISBN 978-0123116321.
25. Ohilsson, T. and Bengsson, N., 2002: Minimal Processing Technologies in the Food Industry. Cambridge, UK: Woodhead Publishing, 288 p. ISBN 978-1855735477.
26. Göransson M, Nilsson F, Jevinger. A (2018) Temperature performance and food shelf-life accuracy in cold food supply chains—insights from multiple field studies. Food Control 86:332–341. https://doi.org/10.1016/j.foodcont.2017.10.029
27. Müller, P., Schmid, M. (2019). Intelligent Packaging in the Food Sector: A Brief Overview. Foods, 8(1), 16. https://doi.org/10.3390/foods8010016
28. Ahvenainen, R., 2003: Novel Food Packaging Techniques. Cambridge UK: Woodhead Publishing, 400 p. ISBN 978-1-85573-675-7.
29. Coles, R., Mcdowell, D. and Kirwan, M. J., 2003: Food Packaging Technology. Oxford, UK: Blackwell Publishing, 346 p. ISBN 978-0849397882.
30. Kerry, J., O’Grady, M., & Hogan, S. (2006). Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Science, 74(1), 113-130.
https://doi.org/10.1016/j.meatsci.2006.04.024
31. Albrecht, A., Ibald, R., Raab, V. et al. (2020). Implementation of Time Temperature Indicators to Improve Temperature Monitoring and Support Dynamic Shelf Life in Meat Supply Chains. J Package Technol Res 4, 23–32. https://doi.org/10.1007/s41783-01900080-x
32. Taoukis, P., & Labuza, T. (1989). Applicability of Time-Temperature Indicators as Shelf Life Monitors of Food Products. Journal of Food Science, 54(4), 783-788. https://doi.org/10.1111/j.1365-2621.1989.tb07882.x
33. Taoukis, P. S., 2008: Application of Time–Temperature Integrators for Monitoring and Management of Perishable Product Quality in the Cold Chain. In: Kerry, J. and Butler, P. (ed.), 2008: Smart Packaging Technologies for Fast Moving Consumer Goods. John Wiley&Sons, Ltd., 61–74. ISBN 978-0470028025.
34. Otles, S. and Yalcin, B., 2008: Intelligent food packaging. Log Forum 4, 4, 3.
URL: http://www.logforum.net/vol4/issue4/no3
35. Kuswandi, B., Wicaksono, Y., Jayus, Abdullah, A., Heng, L., & Ahmad, M. (2011). Smart packaging: sensors for monitoring of food quality and safety. Sensing and Instrumentation for Food Quality and Safety, 5(3-4), 137-146. https://doi.org/10.1007/s11694-011-9120-x
36. Selman, J. D., 1995: Time-temperature indicators. In Rooney, M. L. (ed.), 1995: Active food packaging. 1st edition, London, UK: Blackie Academic & Professional, pp. 215–237, ISBN 978-0751401912.
37. Taoukis, P. and Labuza, T. P., 2003: Time-temperature indicators (TTIs). In: Ahvenainen, R. (ed.), Novel food packaging techniques. Cambridge, UK: Woodhead Publishing Ltd., 590 p. ISBN 978-0849317897.
38. Pavelková, A. (2013). Time temperature indicators as devices intelligent packaging. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 61(1), 245-251. https://doi.org/10.11118/actaun201361010245
39. Meng, J.J., Qian, J., Jung, S.W., Lee, S.J. (2018). Practicability of TTI application to yogurt quality prediction in plausible scenarios of a distribution system with temperature variations. Food Science and Biotechnology. 2018 Oct; 27(5):1333-1342. DOI: 10.1007/s10068-0180371-8.
40. Wang, S., Liu, X., Yang, M., Zhang, Y., Xiang, K., & Tang, R. (2015). Review of Time Temperature Indicators as Quality Monitors in Food Packaging. Packaging Technology and Science, 28(10), 839-867. https://doi.org/10.1002/pts.2148
41. Ruiz-Garcia, L., & Lunadei, L. (2011). The role of RFID in agriculture: Applications, limitations and challenges. Computers and Electronics in Agriculture, 79(1), 42-50. https://doi.org/10.1016/j.compag.2011.08.010
42. Kaur, M., Sandhu, M., Mohan, N., & Sandhu, P. (2011). RFID Technology Principles, Advantages, Limitations & Its Applications. International Journal of Computer and Electrical Engineering, 151-157. https://doi.org/10.7763/ijcee.2011.v3.306
43. Kumar, V. (2018). The Role of RFID in Agro-Food Sector. Agricultural Research & Technology: Open Access Journal, 14(4). https://doi.org/10.19080/artoaj.2018.14.555924
44. Kuswandi, B. (2017). Environmental friendly food nano-packaging. Environmental Chemistry Letters, 15(2), 205-221. https://doi.org/10.1007/s10311-017-0613-7
45. De, J., Bertoldi, B., Jubair, M., Gutierrez, A., Brecht, J., Sargent, S., & Schneider, K. (2020). Evaluation and Comparison of Postharvest Cooling Methods on the Microbial Quality and Storage of Florida Peaches. Horttechnology, 30(4), 504-509. https://doi.org/10.21273/horttech04609-20
46. Kitinoja, L., & F Thompson, J. (2010). Pre-cooling systems for small-scale producers. Stewart Postharvest Review, 6(2), 1-14. https://doi.org/10.2212/spr.2010.2.2
47. Kochhar, V. (2015). Effect of Different Pre-Cooling Methods on the Quality and Shelf Life of Broccoli. Journal of Food Processing & Technology, 06(03). https://doi.org/10.4172/2157-7110.1000424
48. O’Sullivan, J., Ferrua, M., Love, R., Verboven, P., Nicolaï, B., & East, A. (2017). Forcedair cooling of polylined horticultural produce: Optimal cooling conditions and package design. Postharvest Biology and Technology, 126, 67-75. https://doi.org/10.1016/j.postharvbio.2016.11.019
49. Carnelossi, M. A., Sena, E. O., Berry, A. D., & Sargent, S. A. (2019). Effect of Forced-air Cooling, Hydrocooling, or their Combination on Fruit Quality of Two Southern Highbush Blueberry Cultivars. HortScience, 54(1), 136–142. https://doi.org/10.21273/hortsci13181-18
50. Toivonen, P. M. (1997). The effects of storage temperature, storage duration, hydro-cooling, and micro-perforated wrap on shelf life of broccoli (Brassica oleracea L., Italica Group). Postharvest Biology and Technology, 10(1), 59–65. https://doi.org/10.1016/s09255214(97)87275-4
51. Cheng, H. (2006). Vacuum cooling combined with hydrocooling and vacuum drying on bamboo shoots. Applied Thermal Engineering, 26(17-18), 2168-2175. https://doi.org/10.1016/j.applthermaleng.2006.04.004
52. Zheng, L., & Sun, D. (2004). Vacuum cooling for the food industry—a review of recent research advances. Trends in Food Science & Technology, 15(12), 555-568. https://doi.org/10.1016/j.tifs.2004.09.002
53. Sun, D., & Zheng, L. (2006). Vacuum cooling technology for the agri-food industry: Past, present and future. Journal of Food Engineering, 77(2), 203-214. https://doi.org/10.1016/j.jfoodeng.2005.06.023
54. Yahia, E., De Jesus Ornelas-Paz, J., & Elansari, A. (2011). Postharvest technologies to maintain the quality of tropical and subtropical fruits. Postharvest Biology and Technology of Tropical and Subtropical Fruits, 142-195e.
https://doi.org/10.1533/9780857093622.142
55. Motelica, L., Ficai, D., Ficai, A., Oprea, O. C., Kaya, D. A., and Andronescu, E. (2020). Biodegradable Antimicrobial Food Packaging: Trends and Perspectives, Foods 2020, 9, 1438; https://doi.org/10.3390/foods9101438
56. Appendini, P., & Hotchkiss, J. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3(2), 113-126. https://doi.org/10.1016/s14668564(02)00012-7
57. Boz, Z., Welt, B. A., Brecht, J. K., Pelletier, W., McLamore, E., Kiker, G. A., and Butler, J. E. (2018) Review of Challenges and Advances in Modification of Food Package Headspace Gases,” Journal of Applied Packaging Research, 10(1), Article 5.
58. Ozdemir, M., & Floros, J. (2004). Active Food Packaging Technologies. Critical Reviews in Food Science and Nutrition, 44(3), 185-193. https://doi.org/10.1080/10408690490441578
59. Vermeiren, L., Devlieghere, F., & Debevere, J. (2002). Effectiveness of some recent antimicrobial packaging concepts. Food Additives & Contaminants, 19(sup1), 163-171. https://doi.org/10.1080/02652030110104852
60. Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. (2003). Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications. Journal of Food Science, 68(2), 408-420. https://doi.org/10.1111/j.1365-2621.2003.tb05687.x
61. Kenawy, E., Worley, S., & Broughton, R. (2007). The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review. Bio macromolecules, 8(5), 1359-1384. https://doi.org/10.1021/bm061150q
62. López-Rubio, A., Almenar, E., Hernandez-Muñoz, P., Lagarón, J., Catalá, R., & Gavara, R. (2004). Overview of Active Polymer-Based Packaging Technologies for Food Applications. Food Reviews International, 20(4), 357-387. https://doi.org/10.1081/fri-200033462
63. Falagán, N., & Terry, L. (2018). Recent Advances in Controlled and Modified Atmosphere of Fresh Produce. Johnson Matthey Technology Review, 62(1), 107-117. https://doi.org/10.1595/205651318×696684
64. Dziedzic, E., Błaszczyk, J., Bieniasz, M., Dziadek, K., & Kopeć, A. (2020). Effect of modified (MAP) and controlled atmosphere (CA) storage on the quality and bioactive compounds of blue honeysuckle fruits (Lonicera caerulea L.). Scientia Horticulturae, 265, 109226. https://doi.org/10.1016/j.scienta.2020.109226
65. Özer, M., Eris, A., Türk, R., & Sivritepe, N. (1999). A research on controlled atmosphere storage of kiwifruit. Acta Horticulturae, (485), 293-300. https://doi.org/10.17660/actahortic.1999.485.41
66. Bessemans, N., Verboven, P., Verlinden, B., & Nicolaï, B. (2016). A novel type of dynamic controlled atmosphere storage based on the respiratory quotient (RQ-DCA). Postharvest Biology and Technology, 115, 91-102.
https://doi.org/10.1016/j.postharvbio.2015.12.019
67. Hyun, J., & Lee, S. (2017). Effect of modified atmosphere packaging on preserving various types of fresh produce. Journal of Food Safety, 38(1). https://doi.org/10.1111/jfs.12376
68. Azene, M., Workneh, T., & Woldetsadik, K. (2011). Effect of packaging materials and storage environment on postharvest quality of papaya fruit. Journal of Food Science and Technology, 51(6), 1041-1055. https://doi.org/10.1007/s13197-011-0607-6
69. Clarke, R. (2011). Breatheway® Membrane Technology and Modified AtmospherePackaging. Modified Atmosphere Packaging For Fresh-Cut Fruits And Vegetables, 185208. https://doi.org/10.1002/9780470959145.ch9
70. Parry, R. T. (Ed.). (1993). Principles and Applications of Modified Atmosphere Packaging of Foods. Principles and Applications of Modified Atmosphere Packaging of Foods. Published. https://doi.org/10.1007/978-1-4615-2137-2
71. Arah, I., Amaglo, H., Kumah, E., & Ofori, H. (2015). Preharvest and Postharvest Factors Affecting the Quality and Shelf Life of Harvested Tomatoes: A Mini Review. International Journal of Agronomy, 2015, 1-6. https://doi.org/10.1155/2015/478041
72. Meyer, M., & Terry, L. (2010). Manipulating the ripening of imported avocado ‘hass’ fruit during cold storage using e+® ethylene remover or 1-methylcyclopropene (1-MCP). Acta Horticulturae, (858), 295-300.
https://doi.org/10.17660/actahortic.2010.858.44
73. Blankenship, S., & Dole, J. (2003). 1-Methylcyclopropene: a review. Postharvest Biology and Technology, 28(1), 1-25. https://doi.org/10.1016/s0925-5214(02)00246-6
74. Watkins, C. (2006). The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnology Advances, 24(4), 389-409. https://doi.org/10.1016/j.biotechadv.2006.01.005
75. Sisler, E., Serek, M., & Dupille, E. (1996). Comparison of cyclopropene, 1methylcyclopropene, and 3, 3-dimethylcyclopropene as ethylene antagonists in plants. Plant Growth Regulation, 18(3), 169-174.
https://doi.org/10.1007/bf00024378
76. Tassoni, A. (2006). Inhibition of the ethylene response by 1-MCP in tomato suggests that polyamines are not involved in delaying ripening, but may moderate the rate of ripening or over-ripening. Journal of Experimental Botany, 57(12), 3313-3325. https://doi.org/10.1093/jxb/erl092
77. Samih, M. (2015). Effects of ethylene inhibitors, silver nitrate (AgNO3), cobalt chloride (CoCl2) and aminooxyacetic acid (AOA), on in vitro shoot induction and rooting of banana (Musa acuminata L.). African Journal of Biotechnology, 14(32), 2510-2516. https://doi.org/10.5897/ajb2015.14788
78. Lima, P., Ribeiro, W., Oliveira, M., Costa, L., & Finger, F. (2017). Ethylene, 1methylcyclopropene and silver thiosulfate on the post-production of ornamental pepper. Ciência Rural, 47(2). https://doi.org/10.1590/0103-8478cr20151611
79. Manjunatha, G., Gupta, K., Lokesh, V., Mur, L., & Neelwarne, B. (2012). Nitric oxide counters ethylene effects on ripening fruits. Plant Signaling & Behavior, 7(4), 476-483. https://doi.org/10.4161/psb.19523
80. Cheng, G., Yang, E., Lu, W., Jia, Y., Jiang, Y., & Duan, X. (2009). Effect of Nitric Oxide on Ethylene Synthesis and Softening of Banana Fruit Slice during Ripening. Journal of Agricultural and Food Chemistry, 57(13), 5799-5804. https://doi.org/10.1021/jf901173n
81. Zhu, S., Sun, L., & Zhou, J. (2010). Effects of different nitric oxide application on quality of kiwifruit during 20°C storage. International Journal of Food Science & Technology, 45(2), 245-251. https://doi.org/10.1111/j.1365-2621.2009.02127.x
82. Narsaiah, K., Jha, S., Bhardwaj, R., Sharma, R., & Kumar, R. (2011). Optical biosensors for food quality and safety assurance—a review. Journal of Food Science and Technology, 49(4), 383-406. https://doi.org/10.1007/s13197-011-0437-6
83. Thakur, M., & Ragavan, K. (2012). Biosensors in food processing. Journal of Food Science and Technology, 50(4), 625-641. https://doi.org/10.1007/s13197-012-0783-z
84. Majumdar, T., Chakraborty, R., & Raychaudhuri, U. (2013). Development of PEI-GA modified antibody based sensor for the detection of S. aureus in food samples. Food Bioscience, 4, 38-45. https://doi.org/10.1016/j.fbio.2013.08.002
85. Soni, D., Ahmad, R., & Dubey, S. (2018). Biosensor for the detection of Listeria monocytogenes: emerging trends. Critical Reviews in Microbiology, 44(5), 590-608. https://doi.org/10.1080/1040841x.2018.1473331
86. Sharma, H., Agarwal, M., Goswami, M., Sharma, A., Roy, S., Rai, R., & Murugan, M. (2013). Biosensors: tool for food borne pathogen detection. Veterinary World, 6(12), 968973. https://doi.org/10.14202/vetworld.2013.968-973
87. Meshram, B., Agrawal, A., Adil, S., Ranvir, S., & Sande, K. (2018). Biosensor and its Application in Food and Dairy Industry: A Review. International Journal of Current Microbiology and Applied Sciences, 7(2), 3305-3324. https://doi.org/10.20546/ijcmas.2018.702.397
88. Mortari, A., & Lorenzelli, L. (2014). Recent sensing technologies for pathogen detection in milk: A review. Biosensors and Bioelectronics, 60, 8-21. https://doi.org/10.1016/j.bios.2014.03.063
89. Rubab, M., Shahbaz, H., Olaimat, A., & Oh, D. (2018). Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosensors and Bioelectronics, 105, 49-57. https://doi.org/10.1016/j.bios.2018.01.023
90. Yuan, J., Wu, S., Duan, N., Ma, X., Xia, Y., & Chen, J. et al. (2014). A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta, 127, 163168. https://doi.org/10.1016/j.talanta.2014.04.013
91. Naik, K. (2017). Biosensors in Food Processing – A Review. International Journal of Pure & Applied Bioscience, 5(4), 1219-1227. https://doi.org/10.18782/2320-7051.5546
92. Fegade, U., Sharma, H., Bondhopadhyay, B., Basu, A., Attarde, S., Singh, N., & Kuwar, A. (2014). ―Turn-on‖ fluorescent dipodal chemo-sensor for nano-molar detection of Zn2+:Application in living cells imaging. Talanta, 125, 418-424. https://doi.org/10.1016/j.talanta.2014.03.002
93. Wang, Y., & Salazar, J. (2015). Culture-Independent Rapid Detection Methods for Bacterial Pathogens and Toxins in Food Matrices. Comprehensive Reviews in Food Science and Food Safety, 15(1), 183-205. https://doi.org/10.1111/1541-4337.12175
94. Byeon, H., Vodyanoy, V., Oh, J., Kwon, J., & Park, M. (2015). Lytic Phage-Based Magnetoelastic Biosensors for On-site Detection of Methicillin-Resistant Staphylococcus aureus on Spinach Leaves. Journal of the Electrochemical Society, 162(8), B230-B235. https://doi.org/10.1149/2.0681508jes
95. Dukare, A., Bibwe, B., Bhushan, B., & Kadam, D. (2016). Nanotechnology in post-harvest horticulture management: a review. National Conference on Trends in Nanobiotechnology. Chaudhary Charan Singh Haryana Agricultural University, Hissar, Haryana. India.
96. Sharma, C., Dhiman, R., Rokana, N., & Panwar, H. (2017). Nanotechnology: An Untapped Resource for Food Packaging. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01735
97. Marichelvam, Jawaid, & Asim. (2019). Corn and Rice Starch-Based Bio-Plastics as Alternative Packaging Materials. Fibers, 7(4), 32. https://doi.org/10.3390/fib7040032
98. Caon, T., Martelli, S., & Fakhouri, F. (2017). New trends in the food industry: application of nanosensors in food packaging. Nanobiosensors, 773-804. https://doi.org/10.1016/b978-012-804301-1.00018-7
99. Fuertes, G., Soto, I., Vargas, M., Valencia, A., Sabattin, J., & Carrasco, R. (2016). Nanosensors for a Monitoring System in Intelligent and Active Packaging. Journal of Sensors, 2016, 1-8. https://doi.org/10.1155/2016/7980476
100. Munir, S., Ahmed, S., Ibrahim, M., Khalid, M., & Ojha, S. (2020). A Spellbinding Interplay between Biological Barcoding and Nanotechnology. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00883
101. Otoni, C., Espitia, P., Avena-Bustillos, R., & McHugh, T. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83, 60-73. https://doi.org/10.1016/j.foodres.2016.02.018
102. Denesuk (M.) and Wilkinson (S.) (2011), ―Agriculture and Smarter Food Systems‖, The Bridge on Agriculture and Information Technology, 41 (3), Special issue, fall.
103. Ruiz-Garcia, L., Steinberger, G., & Rothmund, M. (2010). A model and prototype implementation for tracking and tracing agricultural batch products along the food chain. Food Control, 21(2), 112-121. https://doi.org/10.1016/j.foodcont.2008.12.003
104. Onwude, D., Chen, G., Eke-emezie, N., Kabutey, A., Khaled, A., & Sturm, B. (2020). Recent Advances in Reducing Food Losses in the Supply Chain of Fresh Agricultural Produce. Processes, 8(11), 1431. https://doi.org/10.3390/pr8111431
105. Song, Y., Hu, Q., Wu, Y., Pei, F., Kimatu, B., Su, A., & Yang, W. (2019). Storage time assessment and shelf-life prediction models for postharvest Agaricus bisporus. LWT, 101, 360-365. https://doi.org/10.1016/j.lwt.2018.11.020
106. Zou, J., & Li, P. (2020). Modelling of litchi shelf life based on the entropy weight method. Food Packaging and Shelf Life, 25, 100509. https://doi.org/10.1016/j.fpsl.2020.100509.
107. Ktenioudaki, A., O’Donnell, C., & do Nascimento Nunes, M. (2019). Modelling the biochemical and sensory changes of strawberries during storage under diverse relative humidity conditions. Postharvest Biology and Technology, 154, 148-158. https://doi.org/10.1016/j.postharvbio.2019.04.023
108. Gruyters, W., Verboven, P., Diels, E., Rogge, S., Smeets, B., & Ramon, H. et al. (2018). Modelling Cooling of Packaged Fruit Using 3D Shape Models. Food and Bioprocess Technology, 11(11), 2008-2020. https://doi.org/10.1007/s11947-018-2163-9
109. Fadiji, T., Ambaw, A., Coetzee, C., Berry, T., & Opara, U. (2018). Application of finite element analysis to predict the mechanical strength of ventilated corrugated paperboard packaging for handling fresh produce. Biosystems Engineering, 174,260-281. https://doi.org/10.1016/j.biosystemseng.2018.07.014
110. Wu, W., & Defraeye, T. (2018). Identifying heterogeneities in cooling and quality evolution for a pallet of packed fresh fruit by using virtual cold chains. Applied Thermal Engineering, 133, 407-417.
https://doi.org/10.1016/j.applthermaleng.2017.11.049
111. Kim, W., Aung, M., Chang, Y., & Makatsoris, C. (2015). Freshness Gauge based cold storage management: A method for adjusting temperature and humidity levels for food quality. Food Control, 47, 510-519.
https://doi.org/10.1016/j.foodcont.2014.07.051
112. Broeze, J.; Guo, X.; Axmann, H.; Vollebregt, M. A Systemic Approach for TradeOff Analysis of Food Loss Reduction and Greenhouse Gas Emissions; CCAFS: Wageningen, Netherlands, 2019.
113. Han, J., Qian, J., Zhao, C., Yang, X., & Fan, B. (2017). Mathematical modelling of cooling efficiency of ventilated packaging: Integral performance evaluation. International Journal of Heat and Mass Transfer, 111,386-397. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.015
114. Rajapaksha, L., Gunathilake, C., Pathirana, S., & Fernando, T. (2021). Reducing post-harvest losses in fruits and vegetables for ensuring food security – Case of Sri Lanka. MOJ Food Processing & Technology, Volume 9(Issue 1 – 2021)
115. Adetuyi, F., Karigidi, K., & Akintimehin, E. (2020). Effect of postharvest UV-C treatments on the bioactive components, antioxidant and inhibitory properties of clerodendrum volubile leaves. Journal of the Saudi Society of Agricultural Sciences, 19(1), 7-13. https://doi.org/10.1016/j.jssas.2018.03.005
116. Siddique, S., Hardy, G., & Bayliss, K. (2018). Cold plasma: a potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathology, 67(5), 1011-1021. https://doi.org/10.1111/ppa.12825
117. Perera, M., Kodithuwakku, S.S. and Weerahewa, J., 2011. Analysis of Vegetable Supply Chains of Supermarkets in Sri Lanka. Sri Lankan Journal of Agricultural Economics, 6(1), pp.67–81. DOI: http://doi.org/10.4038/sjae.v6i1.3471
118. Janaka, H. K., Wickramasinghe, P., Vidanarachchi, J. K., Himali, S. M. C., Fernando P. S. (2013). Effect of different packaging materials on quality characteristics of chicken eggs during storage at room temperature in Sri Lanka, 13th ASEAN Food Conference, 9-11 September 2013, Singapore
119. Gunawardhena C.R., Wasala, W.M.C.B., Dissanayake C. A. K., Wijewardana, R.M.N.A., Chandrajith, U.G., Thilakaratne, B.M.K.S. (2014). Use of safe packaging for vegetable transportation on main supply chains in Sri Lanka, International Research Symposium on Post-Harvest Technology, Institute of Post-Harvest Technology, Sri Lanka, 55-59.
120. Karunasena, H.C.P., Senadeera, W., Brown, R.J., Gu, Y.T. (2014). A novel approach for numerical simulation of plant tissue shrinkage during drying, International Research Symposium on Post-Harvest Technology, Institute of Post-Harvest Technology, Sri Lanka, 55-59.
121. Gunathilake, D., Wasala, W., & Palipane, K. (2016). Design, Development and Evaluation of a Size Grading Machine for Onion. Procedia Food Science, 6, 103-107. https://doi.org/10.1016/j.profoo.2016.02.022
122. Gunathilake, D.C., & K. Tiwari, A. (2017). Evaluation of Efficacy of Washing Treatment for Extending the Post-Harvest Life of Tomato (Solanum lycopersicum L). International Journal of Current Microbiology and Applied Sciences, 6(11), 1999-2004. https://doi.org/10.20546/ijcmas.2017.611.238
123. Samaradiwakara, S., Champa, W., & Eeswara, J. (2019). Harvest maturity affects postharvest quality of lime fruits (Citrus aurantifolia Swingle). Tropical Agricultural Research, 30(4), 125.
https://doi.org/10.4038/tar.v30i4.8334
124. Dharmathilake, N., Rosairo, H., Ayoni, V., & Herath, R. (2020). Implications of Post-Harvest Losses and Acreage Response of Selected Up-Country Vegetables from Nuwara-Eliya District in Sri Lanka on Sustained Food Security. Journal of Agricultural Sciences – Sri Lanka, 15(1), 88. https://doi.org/10.4038/jas.v15i1.8674
125. Mohamed, A., Wathugala, D., Indika A., and Samaraweera, G. C. (2020) Conference: International Symposium on Agriculture and Environment -ISAE 2020, Meeting Future Food Demands: Security & Sustainability, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka.