Abstract :
The development of confirmed cases of COVID-19 in Indonesia is increasing, but until now there is no specific drug to prevent the virus. Therefore, it is necessary to do a research to produce a drug that can prevent this virus. Efforts to prevent the spread of COVID-19 and to avoid contracting the virus can be done by strengthening the immune system. Currently, the development of nanogold and nanosilver utilization occurs very rapidly, especially in the health sector due to its antibacterial and antioxidant properties. In this research, nanogold-nanosilver was presented in the form of drinking water that can be consumed directly. The purpose of this research was to find out the effect of nanogold-nanosilver health drinking water on immune enhacement in terms of anxiety level, stress level, and sleep quality. This research used one group pretest-posttest design. Data collection was conducted through observation and interviews with 75 victims of drug abuse who live in areas affected by COVID-19. Data were analyzed using one paired T-test on SPSS version 25. From the statistical test results obtained p-value 0.000 in all three aspects, it means that nanogold-nanosilver had an effect to boost the immune system.
Keywords :
COVID-19, drug abuse victims, immune enhancement, nanogold, nanosilverReferences :
1) I. I. Bogoch, A. Watts, A. T. Bachli, H. Carmen, M. U. . Kraemer, and K. Khan, ‘Pneumonia of Unknown Aetiology in Wuhan, China: Potential for International Spread Via commercial Air Travel’, Int. Soc. Travel Med., vol. 00, no. 00, pp. 1–3, 2020.
2) H. Lu, C. W. Stratton, and Y. W. Tang, ‘Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle’, J. Med. Virol., vol. 92, no. 4, pp. 401–402, 2020, doi: 10.1002/jmv.25678.
3) Xinhua, ‘New-type coronavirus causes pneumonia in Wuhan: expert – Xinhua | English.news.cn’, www.Xinhuanet.com. 2020.
4) H. Chen et al., ‘Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records’, Lancet, vol. 395, no. 10226, pp. 809–815, 2020, doi: 10.1016/S0140-6736(20)30360-3.
5) Kemenkes RI, ‘Home » Info Infeksi Emerging Kementerian Kesehatan RI’, Kemenkes, 2020. [Online]. Available: https://infeksiemerging.kemkes.go.id/. [Accessed: 10-Oct-2020].
6) W. Wang, J. Tang, and F. Wei, ‘Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China’, J. Med. Virol., vol. 92, no. 4, pp. 441–447, 2020, doi: 10.1002/jmv.25689.
7) Gugus Tugas Percepatan Penanganan COVID-19, Pedoman Penanganan Cepat Medis dan Kesehatan Masyarakat COVID-19 Indonesia. 2020.
8) A. S. Albana, ‘Optimasi Alokasi Pasien untuk Kasus COVID-19 Wilayah Surabaya’, J. Tecnoscienza, vol. 4, no. 2, pp. 181–200, 2020.
9) J. Chang, J. Agliata, and M. Guarinieri, ‘COVID-19 – Enacting a “New Normal” for People Who use Drugs’, Int. J. Drug Policy, vol. 83, pp. 1–6, 2020, doi: 10.1016/j.drugpo.2020.102832.
10) K. Kontoangelos, M. Economou, and C. Papageorgiou, ‘Mental Health Effects of COVID-19 Pandemia: A Review of Clinical and Psychological Traits’,
11) Psychiatry Investig., vol. 17, no. 6, pp. 491–505, 2020, doi: 10.30773/pi.2020.0161.
12) H. Kikuzaki, M. Hisamoto, K. Hirose, K. Akiyama, and H. Taniguchi, ‘Antioxidant Properties of Ferulic Acid and Its Related Compounds’, J. Agric. Food Chem., vol. 50, no. 7, pp. 2161–2168, 2002, doi: 10.1021/jf011348w.
13) C. V. Pop, ‘(12) Patent Application Publication (10) Pub. No.: US 2011/0111002 A1’, Pat. Appl. Publ., vol. 1, no. 19, 2011.
14) L. A. Dykman and N. G. Khlebtsov, ‘Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects’, Acta Naturae, vol. 3, no. 2, pp. 34– 55, 2011, doi: 10.32607/20758251-2011-3-2-34-56.
15) I. V. Kiseleva et al., ‘Anti-Influenza Effect of Nanosilver in a Mouse Model Irina’, Vaccines, vol. 8, no. 4, pp. 1–17, 2020, doi: 10.3390/vaccines8040679.
16) T. Taufikurohmah, N. Naqiyah, S. Muhammad, and A. Sidohutomo, ‘Vandemicum of Nanogold and Nanosilver to Improve Quality Life of Cancer Patients’, in International Joint Conference on Science and Engineering, 2020, vol. 196, pp. 236–244.
17) T. Taufikurohmah, D. Soepardjo, and Rusmini, ‘Herpes Disease : Case Study Of Herpes Transmission In Islamic Cottage Schools’, in National Seminar on Chemistry, 2019, vol. 1, pp. 88–94.
18) N. Hesti Kurnia and T. Taufikurohmah, ‘Pengaruh Penambahan Nanosilver Terhadap Aktivitas Antioksidan Nanogold Dalam Meredam Radikal Bebas’,
19) UNESA J. Chem., vol. 6, no. 3, pp. 161–165, 2017.
20) T. Taufikurohmah, D. Soepardjo, H. Armadianto, and R. Rusmini, ‘Synthesis and Characterization of Nanogold and Nanosilver as Leprosy Drug Candidates and Their Activity Tests in Leprosy Patients; Case Study’, in Mathematics, Informatics, Science, and Education International Conference, 2020, vol. 95, pp. 22–27, doi: 10.2991/miseic-19.2019.6.
21) P. Lovibond and S. Lovibond, Manual for the Depression Anxiety Stress Scale, 2nd ed. Sydney: Psychology Foundation, 1995.
22) N. Sihaloho, ‘Pengaruh Pemberian Aromaterapi Lavender Terhadap Kualitas Tidur Anak Usia Sekolah Yang Di Rawat Inap Di RSUD Dr. Pirngadi Medan’, Universitas Sumatera Utara, 2015.
23) S. Digon, ‘Anti-Anxiety Prescription Meds Increase Amid COVID-19 Pandemic, Report Says’, International Business Times ( 2020 ), 2020. [Online]. Available: https://www.ibtimes.com/anti-anxiety-prescription-meds-increase-amid-covid-19-pandemic-report-says-2962093. [Accessed: 10-Dec-2020].
24) S. A. Lee, M. C. Jobe, A. A. Mathis, and J. A. Gibbons, ‘Incremental Validity of Coronaphobia: Coronavirus Anxiety Explains Depression, Generalized Anxiety, and Death Anxiety’, J. Anxiety Disord., vol. 74, pp. 1–4, 2020, doi: 10.1016/j.janxdis.2020.102268.
25) H. Tan, L. Kheirandish-Gozal, and D. Gozal, ‘Sleep, Sleep Disorders, and Immune Function’, Allergy and Sleep, pp. 3–15, 2019, doi: 10.1007/978-3-030- 14738-9.
26) M. Devanabanda, S. A. Latheef, and R. Madduri, ‘Immunotoxic Effects of Gold and Silver Nanoparticles: Inhibition of Mitogen-Induced Proliferative Responses and Viability of Human and Murine Lymphocytes in Vitro’, J. Immunotoxicol., vol. 13, no. 6, pp. 897–902, 2016, doi: 10.1080/1547691X.2016.1234522.
27) L. Besedovsky, T. Lange, and J. Born, ‘Sleep and Immune Function’, Pflugers Arch. Eur. J. Physiol., vol. 463, no. 1, pp. 121–137, 2012, doi: 10.1007/s00424-011-1044-0.
28) S. Dimitrov, T. Lange, S. Tieken, H. L. Fehm, and J. Born, ‘Sleep Associated Regulation of T Helper 1/T Helper 2 Cytokine Balance in Humans’, Brain. Behav. Immun., vol. 18, no. 4, pp. 341–348, 2004, doi: 10.1016/j.bbi.2003.08.004.
29) Y. Zhang, Y. Zhang, W. Gu, L. He, and B. Sun, ‘Th1/Th2 Cell’s Function in Immune System’, Adv. Exp. Med. Biol., vol. 841, pp. 45–65, 2014, doi: 10.1007/978-94-017-9487-9_3.
30) T. Lange, S. Dimitrov, H. L. Fehm, J. Westermann, and J. Born, ‘Shift of Monocyte Function Toward Cellular Immunity During Sleep’, Arch. Intern. Med., vol. 166, no. 16, pp. 1695–1700, 2006, doi: 10.1001/archinte.166.16.1695.
31) M. R. Irwin, ‘Why Sleep Is Important for Health: A Psychoneuroimmunology Perspective’, Annu. Rev. Psychol., vol. 66, pp. 143–172, 2015, doi: 10.1146/annurev-psych-010213-115205.
32) E. F. Rosa and N. Rustiaty, ‘Affective Disorders in The Elderly: The Risk of Sleep Disorders’, Int. J. Public Heal. Sci., vol. 7, no. 1, p. 33, 2018, doi: 10.11591/ijphs.v7i1.9960.
33) C. Corot, P. Robert, J. M. Idée, and M. Port, ‘Recent advances in iron oxide nanocrystal technology for medical imaging’, Adv. Drug Deliv. Rev., vol. 58, no. 14, pp. 1471–1504, 2006, doi: 10.1016/j.addr.2006.09.013.
34) N. G. Khlebtsov, ‘Optics and Biophotonics of Nanoparticles with A Plasmon Resonance’, Quantum Electron., vol. 38, no. 6, pp. 504–529, 2008, doi: 10.1070/qe2008v038n06abeh013829.
35) M. A. Dobrovolskaia, P. Aggarwal, J. B. Hall, and S. E. McNeil, ‘Preclinical Studies to Understand Nanoparticle Interaction with The Immune System and Its Potential Effects on Nanoparticle Biodistribution’, Mol. Pharm., vol. 5, no. 4, pp. 487–495, 2008, doi: 10.1021/mp800032f.
36) N. Durán, M. Durán, M. B. de Jesus, A. B. Seabra, W. J. Fávaro, and G. Nakazato, ‘Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity’, Nanomedicine Nanotechnology, Biol. Med., vol. 12, no. 3, pp. 789–799, 2016, doi: 10.1016/j.nano.2015.11.016.
37) X. Wang, Y. Du, L. Fan, H. Liu, and Y. Hu, ‘Chitosan- Metal Complexes as Antimicrobial Agent: Synthesis, Characterization and Structure-Activity Study’, Polym. Bull., vol. 55, no. 1–2, pp. 105–113, 2005, doi: 10.1007/s00289-005-0414-1.
38) M. E. Vance, T. Kuiken, E. P. Vejerano, S. P. McGinnis, M. F. Hochella, and D. R. Hull, ‘Nanotechnology in The Real World: Redeveloping the Nanomaterial Consumer Products Inventory’, Beilstein J. Nanotechnol., vol. 6, no. 1, pp. 1769–1780, 2015, doi: 10.3762/bjnano.6.181.
39) M. Rai, A. Yadav, and A. Gade, ‘Silver Nanoparticles as a New Generation of Antimicrobials’, Biotechnol. Adv., vol. 27, no. 1, pp. 76–83, 2009, doi: 10.1016/j.biotechadv.2008.09.002.
40) Q. Li et al., ‘Antimicrobial Nanomaterials for Water Disinfection and Microbial Control: Potential Applications and Implications’, Water Res., vol. 42, pp. 4591–4602, 2008, doi: 10.1016/j.watres.2008.08.015.
41) J. R. Morones et al., ‘The Bactericidal Effect of Silver Nanoparticles’, Nanotechnology, vol. 16, pp. 2346–2353, 2005, doi: 10.1088/0957-4484/16/10/059.
42) S. Gurunathan et al., ‘Cytotoxicity and Transcriptomic Analysis of Silver Nanoparticles in Mouse Embryonic Fibroblast Cells Sangiliyandi’, Int. J. Mol. Sci., vol. 19, 2018, doi: 10.3390/ijms19113618.
43) S. Gurunathan et al., ‘Antiviral Potential of Nanoparticles—Can Nanoparticles Fight against Coronaviruses?’, Nanomaterials, vol. 10, pp. 1–29, 2020, doi: 10.3390/nano10091645.
44) Y. Imai et al., ‘Angiotensin-converting enzyme 2 protects from severe acute lung failure’, Nature, vol. 436, pp. 112–116, 2005, doi: 10.1038/nature03712.