Abstract :
In December 2019 a new type of coronaviruses appeared in China and named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the disease associated with this virus is called Coronavirus Disease 2019 or COVID-19. Currently, COVID19 is the main global health threat. In this review, we focus in the current knowledge of immune response to SARS-CoV-2. Dysregulation of immune system, such as elevation levels of proinflammatory mediators and their roles in disease progression and pathogenesis as well as imbalance between innate and adaptive immune cells, are discussed in this review.
Keywords :
adaptive immunity, coronavirus, COVID-19, Immune response., Innate immunity, SARS-CoV-2References :
1. Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, et al. Coronavirus disease 2019 (COVID-19): A literature review. J Infect Public Heal 2020; 13:667-673. doi: 10.1016/j.jiph.2020.03.019.
2. Di Gennaro F, Pizzol D, Marotta C, Antunes M, Racalbuto V, Veronese N, .et al. Coronavirus Diseases (COVID-19) Current Status and Future Perspectives: A Narrative Review. Int J Env Res Pub He 2020; 14;17 (8):2690. doi: 10.3390/ijerph17082690.
3. Tyrrell DA, Bynoe ML, (1966) Cultivation of viruses from a high proportion of patients with colds. Lancet 1:76–77. DOI: 10.1016/s0140-6736(66)92364-6.
4. Hamre D, Procknow JJ (1966): A new virus isolated from the human respiratory tract. Proc. Soc Exp Biol Med 121:190–193. doi: 10.3181/00379727-121-30734 P
5. McIntosh K, Dees JH, Becke WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA 1967; 57:933–940. doi:10.1073/pnas.57.4.933
6. Tyrrell DA, Almeida JD, Cunningham CH, Dowdle WR, Hofstad MS et al. Coronaviridae. Intervirol 1975; 5:76-82. doi: 10.1159/000149883.
7. Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome see comment. N Engl J Med 2003; 348:1967–1976.
doi: 10.1056/NEJMoa030747
8. Ksiazek TG, Erdman D, Goldsmith CS, Zaki R, Peret T, Emery S, et al. A novel coronavirus associated with severe acute respiratory syndrome see comment. N Engl J Med 2003; 348:1953–1966. . doi: 10.1056/NEJMoa03078.
9. World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Available at: http://www.who.int/csr/sars/country/table2003_09_23/en/ (accessed 7 July 2020).
10. Hui DSC, Chan MCH, Wu1 AK, Ng PC. Severe acute respiratory syndrome (SARS): epidemiology and clinical features. Postgrad Med J 2004; 80:373-81. doi: 10.1136/pgmj.2004.020263.
11. van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJM, Wolthers KC, et al. Identification of a new human coronavirus. Nat Med 2004; 10:368 –373. doi: 10.1038/nm1024
12. Fouchier RAM, Hartwig NG, Bestebroer TM, Niemeyer B, de Jong JC, Simon JH, et al. A previously undescribed coronavirus associated with respiratory disease in humans. P Natl Acad Sci USA 2004: 101:6212– 6216. doi:10.1073/pnas.0400762101
13. Esper F, Weibel C, Ferguson D, Landry ML, Kahn JS. Evidence of a novel human coronavirus that is associated with respiratory tract disease in infants and young children. J Infect Dis 2005; 191:492– 498. doi: 10.1038/nm1024.
14. Woo PCY, Lau SKP, Chu C-M, Chan KH, Tsoi HW, Huang Y, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 2005; 79:884 – 895.
doi: 10.1128/JVI.79.2.884-895.2005.
15. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367:1814–1820. doi: 10.1056/NEJMoa1211721.
16. Wu F, Zhao S, Yu B, Chen YN, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579. :265-269. doi:10.1038/s41586-020-2008-3
17. World Health Organization https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. (Accessed 7 July 2020).
18. Hamming I, Timen W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203: 631–637. doi:10.1002/path.1570.
19. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin. Circ Res 2000; 87: E1-9. doi: 10.1161/01.res.87.5.e1
20. Wan Y, J. Shang, R. Graham, R.S. Baric, F. Li. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol 2020; 94:e00127-20. doi: 10.1128/JVI.00127-20.
21. Rothan HA, Byraredd SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020; 109:102433. doi: 10.1016/j.jaut.2020.102433.
22. Sun P, Lu X, Xu C, Sun W, Pan B. Understanding of COVID-19 based on current evidence. J Med Virol 2020; 92:548-551. doi: 10.1002/jmv.25722.
23. Koyama S, Ishii KJ, Coban C, Akira S. Innate Immune Response to Viral Infection. Cytokine 2008; 43:336-41. doi: 10.1016/j.cyto.2008.07.009.
24. Goritzka M, Makris S, Kausar F, Durant LR, Pereira C, Kumagai Y, et al. Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes. J Exp Med 2015; 212:699-714. doi:10.1084/jem.20140825.
25. Brisse M, Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front Immunol 2019; 10:1586. doi:10.3389/fimmu.2019.01586.
26. Lee AJ, Ashkar AA. The Dual Nature of Type I and Type II Interferons. Front Immunol 2018; 9:2061. doi: 10.3389/fimmu.2018.02061.
27. Trinchieri G. Type I interferon: friend or foe? J Exp Med 2010; 207:2053-2063. doi: 10.1084/jem.20101664.
28. Galani IE., Triantafylli V, Eleminiadou EE, Koltsida O, Stavropoulos A, Manioudaki M, et al. Interferon‐lambda mediates non‐redundant front‐line antiviral protection against influenza virus infection without compromising host fitness. Immunity 2017; 46:875-890.e6. doi: 10.1016/j.immuni.2017.04.025.
29. Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. The use of anti‐inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID‐19): the perspectives of clinical immunologists from China. J Clin Immunol 2020; 214: 108393. doi: 10.1016/j.clim.2020.108393.
30. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. 2016; 19:181-193. doi: 10.1016/j.chom.2016.01.007.
31. Channappanavar R., Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, M. Mack M, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest 2019; 129:3625-3639. doi: 10.1172/JCI126363.
32. Lokugamage KG, Hage A, Schindewolf C, Rajsbaum R, Menachery VD. SARS-CoV-2 is sensitive to type I interferon pretreatment. Version 3 bioRxiv 2020; Apr 9:2020.03.07.982264. doi: 10.1101/2020.03.07.982264. (preprint).
33. Mantlo E, Bukreyeva N, Maruyama J, Paessler S, Huang C. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antivir Res 2020; 179:104811. doi: 10.1016/j.antiviral.2020.104811
34. Sarzi-Puttini P, Giorgi V, Sirotti S, Marotto D, Ardizzone S, Rizzardini G, et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol 2020; 38:337-342.
35. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020; 181:1036-1045.e9. doi: 10.1016/j.cell.2020.04.026.
36. Mehta P, McAuley DF, Michael B, Sanchez E, Tattersall RS. Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395:1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
37. Abassi Z, Knaney Y, Karram T, Heyman TSN. The Lung Macrophage in SARS-CoV-2 Infection: A Friend or a Foe? Front Immunol 2020; 11:1312. doi: 10.3389/fimmu.2020.01312.
38. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020; ciaa248. doi: 10.1093/cid/ciaa248. Online ahead of print.
39. Monteagudo LA, Boothby A, Gertner E. Continuous Intravenous Anakinra Infusion to Calm the Cytokine Storm in Macrophage Activation Syndrome. ACR Open Rheumatology 2020; 2:276-282. doi: 10.1002/acr2.11135.
40. Virgilio FD., Tang Y, Sarti AC, Rossato M. A Rationale for Targeting the P2X7 Receptor in Coronavirus Disease 19 (Covid-19). Br J Pharmacol 2020; 10.1111/bph.15138. doi: 10.1111/bph.15138 (Epub ahead of print).
41. Al-Shukaili A, Al-Kaabi J, Hassan B. A comparative study of interleukin-1beta production and p2x7 expression after ATP stimulation by peripheral blood mononuclear cells isolated from rheumatoid arthritis patients and normal healthy controls. Inflammation 2008; 31:84-90. doi: 10.1007/s10753-007-9052-0.
42. Al-Shukaili A, Al-Kaabi J, Hassan B, Al-Araimi T, Al-Tobi M, Al-Kindi M, et al.P2X7 receptor gene polymorphism analysis in rheumatoid arthritis. Int J Immunogenet 2011; 38:389-96. doi: 10.1111/j.1744-313X.2011.01019.x.
43. Zhang C, He H, Wang L, Zhang N, Huang H, Xiong Q, et al. Virus-Triggered ATP Release Limits Viral Replication through Facilitating IFN-β Production in a P2X7-Dependent Manner. J Immunol 2017; 199:1372-1381.
doi: 10.4049/jimmunol.1700187.
44. Noris M, Benigni A, Remuzzi G. The case of Complement activation in COVID-19 multiorgan impact. Kidney Int 2020; 2538: 30556-30551. doi: 10.1016/j.kint.2020.05.013. Online ahead of print.
45. Gao T, Hu M, Zhang X, Li H, Zhu L, Liu H, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement overactivation. medRxiv 2020; Available at:
https://www.medrxiv.org/content/10.1101/2020.03.29.20041962v2.
doi: 10.1101/2020.03.29.20041962.
46. Diao B, Wang C, Wang R, Feng Z, Tan Y, Wang H, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. medRxiv 2020; Available at:
https://www.medrxiv.org/content/10.1101/2020. 03.04.20031120v4. doi: https://doi.org/10.1101/2020.03.04.20031120.
47. Thirumalaisamy PV, Meyer CG. Mild Versus Severe COVID-19: Laboratory Markers. Int J Infect Dis 2020; 95:304-307. doi: 10.1016/j.ijid.2020.04.061.
48. Li D, Chen Y, Liu H, Jia Y, Li F, Wang W, et al. Immune dysfunction leads to mortality and organ injury in patients with COVID-19 in China: insights from ERS-COVID-19 study. Signal Transduct Target Ther 2020; 5, 62.
doi: 10.1038/s41392-020-0163-5.
49. Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HHX, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect 2020; 81: e6-e12. doi:10.1016/j.jinf.2020.04.002
50. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease. J Clin Invest 2020; 130:2620-2629. doi: 10.1172/JCI137244.
51. Liu Z, Long W, Tu M, Chen S, Huang Y, Wang S, et al. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J Infect 2020 S0163-4453(20)30182-1.
doi: 10.1016/j.jinf.2020.03.054. Online ahead of print.
52. Wang F, Nie J, Wang HQ, Zhao Q, Xiong Y, Deng L et al. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J. Infect Dis 2020; 221:1762-1769.
53. Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther 2020; 5(1):33 doi:10.1038/s41392-020-0148-4
54. Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Dis 2020; 6:31. doi:10.1038/s41421-020-0168-9
55. Wan WY, Lim SH, Seng EH. Cross-reaction of sera from COVID-19 patients with SARS-CoV assays. medRxiv 2020; 2020.03.17.20034454. doi: https://doi.org/10.1101/2020.03.17.20034454.
56. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 2020; 17:533-535. doi: 10.1038/s41423-020-0402-2.
57. Xiao AT, Gao C, Zhang S. Profile of specific antibodies to SARS-CoV-2: The first report. J Infect 2020; 81:147-178.
doi: 10.1016/j.jinf.2020.03.012.
58. Wu LP, Wang NC, Chang YH, Tian XY, Na DY, Zhang LY, et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg infect Dis 2007; 13:1562-1564. doi: 10.3201/eid1310.070576.