Abstract :
Interest in biomass briquettes as a fossil fuel substitute has increased due to the growing need for sustainable energy sources. The impact of hazelnut shell charcoal particle size on briquette quality is examined in this study, with particular attention paid to important variables such bulk density, compressive strength, moisture content, ash content, volatile matter, and fixed carbon content. Three different particle size treatments (20 mesh, 40 mesh, and 60 mesh) were analyzed using a Completely Randomized Design (CRD) with five replications. The results indicated that finer particle sizes (60 mesh) significantly improved briquette quality, exhibiting higher bulk density (0.975 g/cm³), compressive strength (58.38 N/cm²), and fixed carbon content (68.25%), while reducing moisture content (7.13%), ash content (2.85%), and volatile matter (21.65%). These findings highlight the importance of optimizing particle size to enhance the physical and combustion properties of biomass briquettes. Briquette manufacture from hazelnut shell waste offers a viable sustainable bioenergy strategy that supports waste reduction and the growth of renewable energy sources.
Keywords :
biomass briquettes, combustion efficiency, hazelnut shell, particle size, Renewable EnergyReferences :
- Abdel Aal, A. M. K., Ibrahim, O. H. M., Al-Farga, A., & El Saeidy, E. A. (2023). Impact of Biomass Moisture Content on the Physical Properties of Briquettes Produced from Recycled Ficus nitida Pruning Residuals. Sustainability (Switzerland), 15(15). https://doi.org/10.3390/su151511762
- Abineno, J., Dethan, J., Bunga, F. J. H., & Bunga, E. H. (2024). Characterization and performance analysis of Kesambi branch biomass briquettes: A study on particle size effects. Journal of Ecological Engineering, 26(1), 213–222. https://doi.org/10.12911/22998993/195643
- Anukam, A., Berghel, J., Henrikson, G., Frodeson, S., & Ståhl, M. (2021). A review of the mechanism of bonding in densified biomass pellets. In Renewable and Sustainable Energy Reviews (Vol. 148). https://doi.org/10.1016/j.rser.2021.111249
- Balraj, A., Krishnan, J., Selvarajan, K., & Sukumar, K. (2021). Potential use of biomass and coal-fine waste for making briquette for sustainable energy and environment. Environmental Science and Pollution Research, 28(45), 63516–63522. https://doi.org/10.1007/S11356-020-10312-2/METRICS
- Blay-Roger, R., Saif, M., Bobadilla, L. F., Ramirez-Reina, T., Nawaz, M. A., & Odriozola, J. A. (2024). Embracing the sustainable horizons through bioenergy innovations: a path to a sustainable energy future. Frontiers in Chemistry, 12, 1416102. https://doi.org/10.3389/FCHEM.2024.1416102/BIBTEX
- Borkowska, A., Klimek, K., Maj, G., & Kapłan, M. (2024). Analysis of the Energy Potential of Hazelnut Husk Depending on the Variety. Energies, 17(16). https://doi.org/10.3390/en17163933
- Bunga, F. J. H., Dethan, J. J. S., Bullu, N. I., Hetharia, G. E., & Bunga, E. Z. H. (2024). Comparative analysis of predictive models for Tamarindus indica waste briquettes higher heating value. Journal of Ecological Engineering, 26(1), 345–354. https://doi.org/10.12911/22998993/195883
- Dethan, J. J. S. (2024). Statistical models for predicting the higher heating value of torrefied kesambi leaves. Journal of Water and Land Development, 86–90. https://doi.org/10.24425/jwld.2024.151793
- Dethan, J. J. S., Bale-Therik, J. F., Telupere, F. M. S., Lalel, H. J. D., & Adisasmito, S. (2024). Characteristics of kesambi leaf torrefaction biomass. 050016. https://doi.org/10.1063/5.0193717
- Dethan, J., & Lalel, H. (2024). Optimization of Particle Size of Torrefied Kesambi Leaf and Binder Ratio on the Quality of Biobriquettes. Journal of Sustainable Development of Energy, Water and Environment Systems, 12(1), 1–21. https://doi.org/10.13044/j.sdewes.d12.0490
- Dyjakon, A., Sobol, Ł., Krotowski, M., Mudryk, K., & Kawa, K. (2020). The impact of particles comminution on mechanical durability of wheat straw briquettes. Energies, 13(23). https://doi.org/10.3390/en13236186
- Guo, J., Zhang, Y., Fang, J., Ma, Z., Li, C., Yan, M., Qiao, N., Liu, Y., & Bian, M. (2024). Reduction and Reuse of Forestry and Agricultural Bio-Waste through Innovative Green Utilization Approaches: A Review. In Forests (Vol. 15, Issue 8). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/f15081372
- Hansted, A. L. S., Boschert, C., Hawboldt, K. A., Newell, W. J., & Yamaji, F. M. (2024). Impact of densification process on unprocessed biomass and post-hydrothermal carbonization. Biomass and Bioenergy, 184, 107203. https://doi.org/10.1016/J.BIOMBIOE.2024.107203
- Ibitoye, S. E., Mahamood, R. M., Jen, T. C., Loha, C., & Akinlabi, E. T. (2023). An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties. In Journal of Bioresources and Bioproducts (Vol. 8, Issue 4). https://doi.org/10.1016/j.jobab.2023.09.005
- Jonson, J., & Dethan, S. (n.d.). Evaluation of an empirical model for predicting the calorific value of biomass briquettes from candlenut shells and kesambi twigs. 2024(3), 253–264.
- Kette, A. U. S., Dethan, J. J. S., Bunga, F. J. H., Banfatin, N., & Purwadi, R. (2024). Adding adhesive on making of waste bricket of eucalyptus oil refining. THE 7TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, AND MEDICAL DEVICES: The 15th Asian Congress on Biotechnology in Conjunction with the 7th International Symposium on Biomedical Engineering (ACB-ISBE 2022), 3080. https://doi.org/10.1063/5.0195318
- Khan, A. U., Jan, Q. M. U., Abas, M., Muhammad, K., Ali, Q. M., & Zimon, D. (2023). Utilization of Biowaste for Sustainable Production of Coal Briquettes. Energies, 16(20). https://doi.org/10.3390/en16207025
- Li, Z., Wang, Y., Zhang, J., Li, S., Niu, L., Liu, Z., & Liu, H. (2025). Numerical Simulation of CO Generation and Combustion Efficiency in Sintering Process: Effect of Solid Fuel Particle Size. Steel Research International, 96(1), 2400094. https://doi.org/10.1002/SRIN.202400094
- Makaborang, M., Kabeko, S. S., Dethan, J. J. S., & Lano, M. L. (2020). Biomass gasification of candlenut shell and coconut coir with the updraft gasifier method being alternative fuel. IOP Conference Series: Materials Science and Engineering, 823(1). https://doi.org/10.1088/1757-899X/823/1/012017
- Marreiro, H. M. P., Peruchi, R. S., Lopes, R. M. B. P., & Rotella Junior, P. (2024). Briquetting process optimization of poultry litter and urban wood waste. Renewable Energy, 222. https://doi.org/10.1016/j.renene.2024.119955
- McNeill, D. C., Pal, A. K., Nath, D., Rodriguez-Uribe, A., Mohanty, A. K., Pilla, S., Gregori, S., Dick, P., & Misra, M. (2024). Upcycling of ligno-cellulosic nutshells waste biomass in biodegradable plastic-based biocomposites uses – a comprehensive review. In Composites Part C: Open Access (Vol. 14). Elsevier B.V. https://doi.org/10.1016/j.jcomc.2024.100478
- Ngangyo Heya, M., Romo Hernández, A. L., Foroughbakhch Pournavab, R., Ibarra Pintor, L. F., Díaz-Jiménez, L., Heya, M. S., Salas Cruz, L. R., & Carrillo Parra, A. (2022). Physicochemical Characteristics of Biofuel Briquettes Made from Pecan (Carya illinoensis) Pericarp Wastes of Different Particle Sizes. Molecules (Basel, Switzerland), 27(3). https://doi.org/10.3390/molecules27031035
- Nikiforov, A., Kinzhibekova, A., Prikhodko, E., Karmanov, A., & Nurkina, S. (2023). Analysis of the Characteristics of Bio-Coal Briquettes from Agricultural and Coal Industry Waste. Energies, 16(8). https://doi.org/10.3390/en16083527
- Nikiforov, A., Prikhodko, E., Kinzhibekova, A., Karmanov, A., & Alexiou Ivanova, T. (2024). Analysis of the Efficiency of Burning Briquettes from Agricultural and Industrial Residues in a Layer. Energies , 17(13). https://doi.org/10.3390/en17133070
- Okot, D. K., Bilsborrow, P. E., & Phan, A. N. (2019). Briquetting characteristics of bean straw-maize cob blend. Biomass and Bioenergy, 126. https://doi.org/10.1016/j.biombioe.2019.05.009
- Pang, L., Yang, Y., Wu, L., Wang, F., & Meng, H. (2019). Effect of particle sizes on the physical and mechanical properties of briquettes. Energies, 12(19). https://doi.org/10.3390/en12193618
- Paradis, L., Waryoba, D., Robertson, K., Ndayishimiye, A., Fan, Z., Rajagopalan, R., & Randall, C. A. (2022). Densification and Strengthening of Ferrous-Based Powder Compacts Through Cold Sintering Aided Warm Compaction. Advanced Engineering Materials, 24(12). https://doi.org/10.1002/adem.202200714
- Plankenbühler, T., Müller, D., & Karl, J. (2019). Influence of Fine Fuel Particles on Ash Deposition in Industrial-Scale Biomass Combustion: Experiments and Computational Fluid Dynamics Modeling. Energy and Fuels, 33(7). https://doi.org/10.1021/acs.energyfuels.8b04200
- Polesek-Karczewska, S., Hercel, P., Adibimanesh, B., & Wardach-Świȩcicka, I. (2024). Towards Sustainable Biomass Conversion Technologies: A Review of Mathematical Modeling Approaches. In Sustainability (Switzerland) (Vol. 16, Issue 19). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/su16198719
- Qu, Z., Zhang, P., Lai, Y., Wang, Q., Song, J., & Liang, S. (2022). Influence of powder particle size on the microstructure of a hot isostatically pressed superalloy. Journal of Materials Research and Technology, 16. https://doi.org/10.1016/j.jmrt.2021.12.081
- Rahman, A., Murad, S. M. W., Mohsin, A. K. M., & Wang, X. (2024). Does renewable energy proactively contribute to mitigating carbon emissions in major fossil fuels consuming countries? Journal of Cleaner Production, 452, 142113. https://doi.org/10.1016/J.JCLEPRO.2024.142113
- Rey, J. R. C., Mateos-Pedrero, C., Longo, A., Rijo, B., Brito, P., Ferreira, P., & Nobre, C. (2024). Renewable Hydrogen from Biomass: Technological Pathways and Economic Perspectives. Energies 2024, Vol. 17, Page 3530, 17(14), 3530. https://doi.org/10.3390/EN17143530
- Setter, C., Ataíde, C. H., Mendes, R. F., & de Oliveira, T. J. P. (2021a). Influence of particle size on the physico-mechanical and energy properties of briquettes produced with coffee husks. Environmental Science and Pollution Research, 28(7), 8215–8223. https://doi.org/10.1007/S11356-020-11124-0/METRICS
- Setter, C., Ataíde, C. H., Mendes, R. F., & de Oliveira, T. J. P. (2021b). Influence of particle size on the physico-mechanical and energy properties of briquettes produced with coffee husks. Environmental Science and Pollution Research, 28(7), 8215–8223. https://doi.org/10.1007/S11356-020-11124-0/METRICS
- Sikiru, S., Abioye, K. J., Adedayo, H. B., Adebukola, S. Y., Soleimani, H., & Anar, M. (2024). Technology projection in biofuel production using agricultural waste materials as a source of energy sustainability: A comprehensive review. Renewable and Sustainable Energy Reviews, 200, 114535. https://doi.org/10.1016/J.RSER.2024.114535
- Wang, J., & Azam, W. (2024). Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geoscience Frontiers, 15(2). https://doi.org/10.1016/j.gsf.2023.101757
- Wang, L., Skreiberg, Ø., Gronli, M., Specht, G. P., & Antal, M. J. (2013). Is elevated pressure required to achieve a high fixed-carbon yield of charcoal from biomass? Part 2: The importance of particle size. Energy and Fuels, 27(4). https://doi.org/10.1021/ef400041h
- Wang, Y., Wu, K., & Sun, Y. (2018). Effects of raw material particle size on the briquetting process of rice straw. Journal of the Energy Institute, 91(1), 153–162. https://doi.org/10.1016/J.JOEI.2016.09.002
- Xiumin, J., Chuguang, Z., Jianrong, Q., Jubin, L., & Dechang, L. (2001). Combustion characteristics of super fine pulverized coal particles. Energy and Fuels, 15(5). https://doi.org/10.1021/ef000283g
- Xu, C., Wei, K., Du, Z., & Ma, W. (2024). Effect of particle size on the properties of biomass gasification residue pellets used as a metallurgical-grade silicon reducing agent. Powder Technology, 435. https://doi.org/10.1016/j.powtec.2024.119406
- Zhang, L., Choo, S. R., Kong, X. Y., & Loh, T. P. (2024). From biomass to fuel: Advancing biomass upcycling through photocatalytic innovation. Materials Today Chemistry, 38, 102091. https://doi.org/10.1016/J.MTCHEM.2024.102091
- Zheng, Q. J., Yang, R. Y., Zeng, Q. H., Zhu, H. P., Dong, K. J., & Yu, A. B. (2024). Interparticle forces and their effects in particulate systems. Powder Technology, 436. https://doi.org/10.1016/j.powtec.2024.119445
- Zhu, J., Guo, Y., Chen, N., & Chen, B. (2024). A Review of the Efficient and Thermal Utilization of Biomass Waste. In Sustainability (Switzerland) (Vol. 16, Issue 21). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/su16219506