Abstract :
The exponential development in electronic waste (e-waste) has become an urgent global concern, necessitating new and sustainable recycling solutions. Emerging technologies, including bioleaching, robots, and artificial intelligence (AI)-driven material recovery, present prospects to transform e-waste management by enhancing resource recovery, minimizing environmental impact, and boosting social and economic growth. This study assesses the effectiveness of these sophisticated recycling technologies, concentrating on their economic viability, environmental sustainability, and societal advantages. A mixed-methods approach, integrating quantitative data analysis and qualitative insights, gives a full appraisal of the revolutionary potential of these technologies in the context of a circular economy.
Keywords :
Artificial Intelligence, Circular Economy, E-waste management, Emerging technologies, Environmental sustainability, Sustainable recycling.References :
- Baldé CP, Forti V, Gray V, et al. The Global E-Waste Monitor 2020. United Nations University; 2020.
- Cucchiella F, D’Adamo I, Koh SCL, Rosa P. Recycling of WEEEs: An economic and environmental assessment. Renew Sust Energ Rev. 2015;51:263-277. doi:10.1016/j.rser.2015.06.010
- Forti V, Baldé CP, Kuehr R. E-Waste Statistics: Guidelines on Classifications, Reporting and Indicators. United Nations University; 2018.
- Zhang L, Xu Z, Ding W. Technological advancements in e-waste recycling: The potential of AI and robotics. J Environ Manage. 2021;287:112282. doi:10.1016/j.jenvman.2021.112282
- Tansel B. From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Environ Int. 2017;98:35-45. doi:10.1016/j.envint.2016.10.002
- Ilankoon IMSK, Ghosh B, Chong MN, et al. E-waste in the international context: A review of trade flows, regulations, hazards, waste management strategies and recovery technologies. Waste Manage. 2018;82:258-275. doi:10.1016/j.wasman.2018.10.018
- Parajuly K, Habib K, Liu G. Waste electrical and electronic equipment (WEEE) in Denmark: Flows, quantities and management. Resour Conserv Recycl. 2017;123:85-92. doi:10.1016/j.resconrec.2016.08.007
- Zeng X, Yang C, Chiang JF, Li J. Innovating e-waste management: From macroscopic to microscopic scales. Sci Total Environ. 2017;575:1-10. doi:10.1016/j.scitotenv.2016.10.113
- Ghosh B, Ghosh MK, Parhi P, et al. Waste printed circuit boards recycling: An extensive assessment of current status, treatment technologies, challenges, and future trends. J Clean Prod. 2015;94:5-19. doi:10.1016/j.jclepro.2015.02.024
- Garlapati VK. E-waste in India and developed countries: Management, recycling, business, and biotechnological initiatives. Renew Sust Energ Rev. 2016;54:874-881. doi:10.1016/j.rser.2015.10.106
- Chancerel P, Rotter VS. Assessing the management of small waste electrical and electronic equipment through substance flow analysis – A case study of Germany. J Ind Ecol. 2009;13(5):791-810. doi:10.1111/j.1530-9290.2009.00172.x
- Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Böni H. Global perspectives on e-waste. Environ Impact Assess Rev. 2005;25(5):436-458. doi:10.1016/j.eiar.2005.04.001
- Chung S-S, Zhang C. An evaluation of legislative measures on electrical and electronic waste in the People’s Republic of China. Waste Manage. 2011;31(12):2638-2646. doi:10.1016/j.wasman.2011.07.003
- Cui J, Forssberg E. Mechanical recycling of waste electric and electronic equipment: A review. J Hazard Mater.2003;99(3):243-263. doi:10.1016/S0304-3894(03)00061-X
- Yoshida F, Tasaki T. Post-consumer recyclability of commodity plastics under various recycling scenarios. Polym Degrad Stab. 2011;96(4):611-618. doi:10.1016/j.polymdegradstab.2010.12.017
- Wang F, Kuehr R, Ahlquist D, Li J. E-waste in China: A country report. United Nations University & Basel Convention Regional Centre China; 2013.