Abstract :
Hemophilia is the most frequent severe genetic haemorrhagic condition. Hemophilia A and B are caused by a lack or dysfunction of the factor VIII and factor IX proteins, respectively, and are distinguished by prolonged and heavy bleeding after minor trauma or even spontaneously. Treatments for hemophilia have been extremely expensive and required the infusion of plasma clotting factors throughout one’s life. The last few years have brought major breakthroughs in gene therapy that now hold real promise for possible curative options. Artificial intelligence has the potential to transform all levels of hemophilia gene therapy, from vector design to predictive modeling and biomarker identification. This review highlights selected applications of AI towards precision medicine including viral vector design, predictive modeling for gene editing, and deep phenotyping in hemophilia gene therapy. It can greatly improve the efficacy and safety of gene therapy through off-target effects prediction, optimization designs of delivery vectors, and determination of personalized combinations of treatments. Consequently, this will also enable accelerated biomarker development for disease diagnosis and monitoring. In such a way, artificial intelligence in hemophilia gene therapy will revolutionize the framework of treatment and make it personalized or even curative for patients all over the world.
Keywords :
deep learning and machine learning., gene editing, gene therapy, Hemophilia, viral vectorsReferences :
- Tyrrell P, et al. Infusing artificial intelligence into hemophilia care: taking the next step. 2023;100(2):32–3. doi: 10.33137/utmj.v100i2.41464
- Shrestha GS, Poudyal B, Bhattarai AS, Shrestha PS, Sedain G, Acharya N, et al. Perioperative management of two cases of hemophilia with spontaneous intracerebral hemorrhage undergoing emergency craniotomy in resource constrained setup of Nepal. Indian J Crit Care Med 2014;18(11):754–6. doi: 10.4103/0972-5229.144023.
- Nathwani AC, et al. Gene therapy for hemophilia. Hematology Am Soc Hematol Educ Program 2022;2022(1):569–78. doi: 10.1182/hematology.2022000388.
- Roth DA, Tawa NE, O’Brien JM, Treco DA, Selden RF, et al. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med 2001;344(23):1735–42. doi: 1056/NEJM200106073442301.
- Sharma R, Dash SK, Chawla R, Kansal S, Agrawal DK, Dua H, et al. Acquired hemophilia complicated by cardiorenal syndrome type 3. Indian J Crit Care Med 2013;17(6):378–81. doi: 10.4103/0972-5229.123456.
- Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003;101(8):2963–72. doi: 10.1182/blood-2002-10-3296.
- Liras A, Segovia C, Gabán AS, et al. Advanced therapies for the treatment of hemophilia: future perspectives. Orphanet J Rare Dis 2012;7:97. doi: 10.1186/1750-1172-7-97.
- Ghosh S, Brown AM, Jenkins C, Campbell K, et al. Viral vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges. Appl Biosaf 2020;25(1):7–18. doi: 10.1177/1535676019899502.
- Gao G-P, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 2002;99(18):11854–9. doi: 10.1073/pnas.182412299.
- Kolesnik VV, Nurtdinov RF, Oloruntimehin ES, Karabelsky AV, Malogolovkin AS, et al. Optimization strategies and advances in the research and development of AAV-based gene therapy to deliver large transgenes. Clin Transl Med 2024;14(3):1607. doi: 10.1002/ctm2.1607.
- Vandamme C, Adjali O, Mingozzi F, et al. Unraveling the complex story of immune responses to AAV vectors trial after trial. Hum Gene Ther 2017;28(11):1061–74. doi: 10.1089/hum.2017.150.
- Jacobs F, Wisse E, De Geest B, et al. The role of liver sinusoidal cells in hepatocyte-directed gene transfer. Am J Pathol 2010;176(1):14–21. doi: 10.2353/ajpath.2010.090136.
- Pasi KJ, Rangarajan S, Mitchell N, Lester W, Symington E, Madan B, et al. Multiyear follow-up of AAV5-hFVIII-SQ gene therapy for hemophilia A. N Engl J Med 2020;382(1):29–40. doi: 10.1056/nejmoa1908490.
- Nathwani AC, Reiss UM, Tuddenham EGD, Rosales C, Chowdary P, McIntosh J, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 2014;371(21):1994–2004. doi: 10.1056/nejmoa1407309.
- Zhang G, Budker V, Wolff JA, et al. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999;10(10):1735–7. doi: 10.1089/10430349950017734.
- Sendra L, Herrero M, Aliño S, et al. Translational advances of hydrofection by hydrodynamic injection. Genes (Basel) 2018;9(3):136. doi: 3390/genes9030136.
- Heng HHQ, Goetze S, Ye CJ, Liu G, Stevens JB, Bremer SW, et al. Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. J Cell Sci 2004;117(7):999–1008. doi: 10.1242/jcs.00976.
- Ghadiri M, Vasheghani-Farahani E, Atyabi F, Kobarfard F, Hosseinkhani H, et al. In-vitro assessment of magnetic dextran-spermine nanoparticles for capecitabine delivery to cancerous cells. Iran J Pharm Res 2017;16(4):1320–34.
- Zhang H, McCarty N, et al. CRISPR-Cas9 technology and its application in haematological disorders. Br J Haematol 2016;175:208–25. doi: 10.1111/bjh.14297.
- Hsu JY, Grünewald J, Szalay R, Shih J, Anzalone AV, Lam KC, et al. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat Commun 2021;12(1):1034. doi: 10.1038/s41467-021-21337-7.
- Lee JH, Oh H-K, Choi BS, Lee HH, Lee KJ, Kim UG, et al. Genome editing-mediated knock-in of therapeutic genes ameliorates the disease phenotype in a model of hemophilia. Mol Ther Nucleic Acids 2022;29:551–62. doi: 10.1016/j.omtn.2022.08.002
- Hwang G-H, Jeong YK, Habib O, Hong S-A, Lim K, Kim J-S, et al. PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing. Nucleic Acids Res 2021;49(W1):W499–504. doi: 10.1093/nar/gkab319.
- Arbab M, Shen MW, Mok B, Wilson C, Matuszek Ż, Cassa CA, et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell 2020;182(2):463–80.e30. doi: 10.1016/j.cell.2020.05.037.
- Dixit S, Kumar A, Srinivasan K, Vincent PMDR, Ramu Krishnan N, et al. Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Front Bioeng Biotechnol 2024;11:1335901. doi: 10.3389/fbioe.2023.1335901.
- Delpierre C, Lefèvre T, et al. Precision and personalized medicine: What their current definition says and silences about the model of health they promote. Implication for the development of personalized health. Front Sociol 2023;8:1112159. doi: 10.3389/fsoc.2023.1112159.
- [1] Johnson KB, Wei W-Q, Weeraratne D, Frisse ME, Misulis K, Rhee K, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci 2020;14(1):86–93. doi: 10.1111/cts.12884.
- Bakker OB, Aguirre-Gamboa R, Sanna S, Oosting M, Smeekens SP, Jaeger M, et al. Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses. Nat Immunol 2018;19(7):776–86. doi: 10.1038/s41590-018-0121-3.
- Davenport T, Kalakota R, et al. The potential for artificial intelligence in healthcare. Future Healthc J 2019;6(2):94–8. doi: 10.7861/futurehosp.6-2-94.
- Pulley JM, Shirey-Rice JK, Lavieri RR, Jerome RN, Zaleski NM, Aronoff DM, et al. Accelerating precision drug development and drug repurposing by leveraging human genetics. Assay Drug Dev Technol 2017;15(3):113–9. doi: 10.1089/adt.2016.772.
- Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R, et al. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 2019;292(1):60–6. doi: 10.1148/radiol.2019182716.
- Wright JT, Herzberg MC, et al. Science for the next century: Deep phenotyping. J Dent Res 2021;100(8):785–9. doi: 10.1177/00220345211001850.
- Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018;562(7726):203–9. doi: 10.1038/s41586-018-0579-z.
- Perkins BA, Caskey CT, Brar P, Dec E, Karow DS, Kahn AM, et al. Precision medicine screening using whole-genome sequencing and advanced imaging to identify disease risk in adults. Proc Natl Acad Sci U S A 2018;115(14):3686–91. doi: 10.1073/pnas.1706096114.
- Subramanian M, Wojtusciszyn A, Favre L, Boughorbel S, Shan J, Letaief KB, et al. Precision medicine in the era of artificial intelligence: implications in chronic disease management. J Transl Med 2020;18(1):1–12. doi: 10.1186/s12967-020-02658-5.
- Wu T, Hu Y, Tang LV, et al. Gene therapy for polygenic or complex diseases. Biomark Res 2024;12(1):99. doi: 10.1186/s40364-024-00618-5.
- Simon R, et al. Genomic biomarkers in predictive medicine. An interim analysis. EMBO Mol Med 2011;3(8):429–35. doi: 10.1002/emmm.201100153.
- Tishan Y, et al. Understanding the difference between supervised and unsupervised learning techniques. 2023; Not applicable. doi: 10.13140/RG.2.2.36176.48641.
- Ali S, Abuhmed T, El-Sappagh S, Muhammad K, Alonso-Moral JM, Confalonieri R, et al. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Inf Fusion 2023;99:101805. doi: 10.1016/j.inffus.2023.1148.
- Ng S, Masarone S, Watson D, Barnes MR, et al. The benefits and pitfalls of machine learning for biomarker discovery. Cell Tissue Res 2023;394(1):17–31. doi: 10.1007/s00441-023-03816-z.