Abstract :
Nuclear magnetic resonance (NMR) spectroscopy is a powerful non-invasive analytical technique with wide applications that can observe multiple nuclear species at a site-resolved level. Despite this, NMR has inherent low sensitivity compared to other analytical techniques. A principal approach to improve the sensitivity and resolution of the NMR experiment is to increase the strength of the external static magnetic field (B0), for which the upper practicable limit has gradually increased over five decades. The relatively recent use of high-temperature superconducting materials, such as Bi2Sr2Ca2Cu3Ox (Bi-2223), Bi2Sr2CaCu2Ox (Bi-2212) or REBa2Cu3O7-x (REBCO, RE = rare earth), has enabled construction of ultra-high field NMR magnets. Over twenty commercial ultra-high field NMR instruments at 1.0, 1.1 and 1.2 GHz (23.5, 25.9 and 28.2 Tesla, respectively) have been installed worldwide in the past several years, with more to come. NMR at ultra-high fields benefits both solution-state and solid-state NMR applications. The potential improvements in sensitivity and resolution in NMR spectra are particularly important for studying the structure, dynamics and ligand interactions of biomolecules, which can suffer from poor sensitivity and prohibitive signal crowding. The benefits of using ultra-high field NMR have begun to be demonstrated on various sample types, including intrinsically disordered proteins, membrane proteins, amyloid fibrils, viral capsids, bacterial chlorosomes, fungal cell walls, and whole human cells. Alongside optimisations in sample preparation, probe design and pulse sequences, and exploitation of dynamic nuclear polarisation (DNP), ultra-high field magnets are contributing to an exciting period for improving the sensitivity and resolution of NMR spectra in the study of more complex biomolecules and other samples.
Keywords :
Energy levels, Magnetic field, NMR-active nuclei, Resolution, Sensitivity, Signal dispersion, Solid-state NMR, Solution-state NMR.References :
- Ahmed, D., Cacciatore, S., and Zerbini, L. F. 2023. Metabolite analyses using nuclear magnetic resonance (NMR) spectroscopy in plasma of patients with prostate cancer. Methods Mol Biol 2675: 195-204.
- Akutsu, H. 2023. Strategies for elucidation of the structure and function of the large membrane protein complex, FoF1-ATP synthase, by nuclear magnetic resonance. Biophys Chem 296: 106988.
- Ardenkjaer-Larsen, J. H., Boebinger, G. S., Comment, A., Duckett, S., Edison, A. S., Engelke, F., Griesinger, C., Griffin, R. G., Hilty, C., Maeda, H., Parigi, G., Prisner, T., Ravera, E., van Bentum, J., Vega, S., Webb, A., Luchinat, C., Schwalbe, H., and Frydman, L. 2015. Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy. Angew Chem Int Ed Engl 54(32): 9162-9185.
- Bahri, S., Safeer, A., Adler, A., Smedes, H., van Ingen, H., and Baldus, M. 2023. 1H-detected characterization of carbon-carbon networks in highly flexible protonated biomolecules using MAS NMR. J Biomol NMR 77(3): 111-119.
- Barnes, A. B., Paëpe, G. D., van der Wel, P. C., Hu, K. N., Joo, C. G., Bajaj, V. S., Mak-Jurkauskas, M. L., Sirigiri, J. R., Herzfeld, J., Temkin, R. J., and Griffin, R. G. 2008. High-field dynamic nuclear polarization for solid and solution biological NMR. Appl Magn Reson 34(3-4): 237-263.
- Berge, A. H., Pugh, S. M., Short, M. I. M., Kaur, C., Lu, Z., Lee, J. H., Pickard, C. J., Sayari, A., and Forse, A. C. 2022. Revealing carbon capture chemistry with 17-oxygen NMR spectroscopy. Nat Commun 13(1): 7763.
- Brown, S. P., and Su Y. 2023. Solid-state NMR of organic molecules: Characterising solid-state form. Solid State Nucl Magn Reson 126: 101876.
- Caceres-Cortes, J., Falk, B., Mueller, L., and Dhar, T. G. M. 2024. Perspectives on nuclear magnetic resonance spectroscopy in drug discovery research. J Med Chem 67(3): 1701-1733.
- Callon, M., Luder, D., Malär, A. A., Wiegand, T., Římal, V., Lecoq, L., Böckmann, A., Samoson, A., and Meier, B. H. 2023. High and fast: NMR protein-proton side-chain assignments at 160 kHz and 1.2 GHz. Chem Sci 14(39): 10824-10834.
- Callon, M., Malär, A. A., Pfister, S., Římal, V., Weber, M. E., Wiegand, T., Zehnder, J., Chávez, M., Cadalbert, R., Deb, R., Däpp, A., Fogeron, M. L., Hunkeler, A., Lecoq, L., Torosyan, A., Zyla, D., Glockshuber, R., Jonas, S., Nassal, M., Ernst, M., Böckmann, A., and Meier, B. H. 2021. Biomolecular solid-state NMR spectroscopy at 1200 MHz: The gain in resolution. J Biomol NMR 75(6-7): 255-272.
- Camacho-Zarco, A. R., Schnapka, V., Guseva, S., Abyzov, A., Adamski, W., Milles, S., Jensen, M. R., Zidek, L., Salvi, N., and Blackledge, M. 2022. NMR provides unique insight into the functional dynamics and interactions of intrinsically disordered proteins. Chem Rev 122(10): 9331-9356.
- Cao, R., Liu, X., Liu, Y., Zhai, X., Cao, T., Wang, A., and Qiu, J. 2021. Applications of nuclear magnetic resonance spectroscopy to the evaluation of complex food constituents. Food Chem 342: 128258.
- Derome, E. 1987. Modern NMR techniques for chemistry research. Elsevier Science Ltd, London.
- Dinclaux, M., Cahoreau, E., Millard, P., Létisse, F., and Lippens, G. 2020. Increasing field strength versus advanced isotope labeling for NMR-based fluxomics. Magn Reson Chem 58(4): 305-311.
- Dsouza, L., Li, X., Erić, V., Huijser, A., Jansen, T. L. C., Holzwarth, A. R., Buda, F., Bryant, D. A., Bahri, S., Gupta, K. B. S. S, Sevink, G. J. A., and de Groot, H. J. M. 2024. An integrated approach towards extracting structural characteristics of chlorosomes from a bchQ mutant of Chlorobaculum tepidum. Phys Chem Chem Phys 26(22): 15856-15867.
- Du, M. 2023. Approaches to NMR sensitivity enhancement based on theoretical analysis. J Phys: Conf Ser 2634: 012023.
- Dyson, H. J., and Wright, P. E. 2019. Perspective: The essential role of NMR in the discovery and characterization of intrinsically disordered proteins. J Biomol NMR 73(12): 651-659.
- El Sabbagh, N., Bonny, J. M., Clerjon, S., Chassain, C., and Pagés, G. 2022. Characterization of the sodium binding state in several food products by 23Na nuclear magnetic resonance spectroscopy. Magn Reson Chem 60(7): 597-605.
- Emwas, A.-H., Roy, R., McKay, R. T., Tenori, L., Saccenti, E., Gowda, G. A. N., Raftery, D., Alahmari, F., Jaremko, L., Jaremko, M., and Wishart, D. S. 2019. NMR spectroscopy for metabolomics research. Metabolites 9(7): 123.
- Emwas A.-H., Szczepski, K., Poulson, B. G., Chandra, K., McKay, R. T., Dhahri, M., Alahmari, F., Jaremko, L., Lachowicz, J.I., and Jaremko, M. 2020. NMR as a “gold standard” method in drug design and discovery. Molecules 25(20): 4597.
- Farrar, C. T., Hall, D. A., Gerfen, G. J., Rosay, M., Ardenkjaer-Larsen, J. H., and Griffin, R. G. 2000. High-frequency dynamic nuclear polarization in the nuclear rotating frame. J Magn Reson 144(1): 134-141.
- Florea, I., Jumate, E., Manea, D. L., and Fechete, R. 2019. NMR study on new natural building materials. Procedia Manufacturing 32: 224-229.
- Gan, Z., Hung, I., Wang, X., Paulino, J., Wu, G., Litvak, I. M., Gor’kov, P. L., Brey, W. W., Lendi, P., Schiano, J. L., Bird, M. D., Dixon, I. R., Toth, J., Boebinger, G. S., and Cross, T. A. 2017. NMR spectroscopy up to 35.2T using a series-connected hybrid magnet. J Magn Reson 284: 125-136.
- Gerez, J. A., Prymaczok, N. C., Kadavath, H., Ghosh, D., Bütikofer, M., Fleischmann, Y., Güntert, P., and Riek, R. 2022. Protein structure determination in human cells by in-cell NMR and a reporter system to optimize protein delivery or transexpression. Commun Biol 5(1): 1322.
- Grover, V. P., Tognarelli, J. M., Crossey, M. M., Cox, I. J., Taylor-Robinson, S. D, and McPhail, M. J. 2015. Magnetic resonance imaging: Principles and techniques: Lessons for clinicians. J Clin Exp Hepatol 5(3): 246-255.
- Hiruma-Shimizu, K., Shimizu, H., Thompson, G. S., Kalverda, A. P., and Patching, S. G. 2015. Deuterated detergents for structural and functional studies of membrane proteins: Properties, chemical synthesis and applications. Mol Membr Biol 32(5-8): 139-155.
- Horrocks, V., Hind, C. K., Wand, M. E., Fady, P. E., Chan, J., Hopkins, J. C., Houston, G. L., Tribe, R. M., Sutton, J. M., and Mason, A. J. 2022. Nuclear magnetic resonance metabolomics of symbioses between bacterial vaginosis-associated bacteria. mSphere 7(3): e0016622.
- Hu, J., Kim, J., and Hilty, C. 2022. Detection of protein-ligand interactions by 19F nuclear magnetic resonance using hyperpolarized water. J Phys Chem Lett 13(17): 3819-3823.
- Kadavath, H., Cecilia Prymaczok, N., Eichmann, C., Riek, R., and Gerez, J. A. 2023. Multi-dimensional structure and dynamics landscape of proteins in mammalian cells revealed by in-cell NMR. Angew Chem Int Ed Engl 62(4): e202213976.
- Kalverda, A. P., Gowdy, J., Thompson, G. S., Homans, S. W., Henderson, P. J., and Patching, S. G. 2014. TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor. Mol Membr Biol 31(4): 131-140.
- Kaup, R., and Velders, A. H. 2022. Controlling trapping, release, and exchange dynamics of micellar core components. ACS Nano 16(9): 14611-14621.
- Keeler, J. 2010. Understanding NMR spectroscopy. Wiley.
- Khasham,i F. 2024. Fundamentals of NMR and MRI: From quantum principles to medical applications. Springer Cham.
- Kruschwitz, S., Munsch, S., Telong, M., Schmidt, W., Bintz, T., Fladt, M., and Stelzner, M. 2023. The NMR core analyzing tomograph: A multi-functional tool for non-destructive testing of building materials. Magn Reson Lett 3(3): 207-219.
- Lacey, M. E., Subramanian, R., Olson, D. L., Webb, A. G., and Sweedler, J. V. 1999. High-resolution NMR spectroscopy of sample volumes from 1 nL to 10 µL. Chem Rev 99(10): 3133-3152.
- Leifer, N., Aurbach, D., and Greenbaum, S. G. 2024. NMR studies of lithium and sodium battery electrolytes. Prog Nucl Magn Reson Spectrosc 142-143: 1-54.
- Levitt, M. H. 2001. Spin dynamics: Basics of nuclear magnetic resonance. Wiley-Blackwell.
- Luchinat, E., and Banci, L. 2022. In-cell NMR: From target structure and dynamics to drug screening. Curr Opin Struct Biol 74: 102374.
- Luchinat, E., Barbieri, L., Cremonini, M., and Banci, L. 2021b. Protein in-cell NMR spectroscopy at 1.2 GHz. J Biomol NMR 75(2-3): 97-107.
- Luchinat, E., Barbieri, L., Cremonini, M., Pennestri, M., Nocentini, A., Supuran, C. T., and Banci, L. 2021a. Determination of intracellular protein-ligand binding affinity by competition binding in-cell NMR. Acta Crystallogr D Struct Biol 77(Pt 10): 1270-1281.
- Marchand, J., Martineau, E., Guitton, Y., Dervilly-Pinel, G., and Giraudeau, P. 2017. Multidimensional NMR approaches towards highly resolved, sensitive and high-throughput quantitative metabolomics. Curr Opin Biotechnol 43: 49-55.
- Mauri, M., and Simonutti, R. 2012. Hyperpolarized xenon nuclear magnetic resonance (NMR) of building stone materials. Materials 5(9): 1722-1739.
- Moser, E., Laistler, E., Schmitt, F., and Kontaxis, G. 2017. Ultra-high field NMR and MRI-the role of magnet technology to increase sensitivity and specificity. Front Phys 5(33): 1-15.
- Nagana Gowda, G. A., and Raftery, D. 2023. NMR metabolomics methods for investigating disease. Anal Chem 95(1): 83-99.
- Nawaz, N., and Patching, S. G. 2023. Polarising agents and spin tags for dynamic nuclear polarisation (DNP)-enhanced solid-state nuclear magnetic resonance (ssNMR) analysis of biological samples. Curr J Appl Sci Technol 42(28): 11-38.
- Nimerovsky, E., Movellan, K. T., Zhang, X. C., Forster, M. C., Najbauer, E., Xue, K., Dervişoǧlu, R., Giller, K., Griesinger, C., Becker, S., and Andreas, L. B. 2021. Proton detected solid-state NMR of membrane proteins at 28 Tesla (1.2 GHz) and 100 kHz magic-angle spinning. Biomolecules 11(5): 752.
- Oliveira, D. R., da Costa, E. T., Schenberg, L. A., Ducati, L. C., and do Lago, C. L. 2024. 13C NMR as an analytical tool for the detection of carbonic acid and pKa determination. Magn Reson Chem 62(2): 114-120.
- Park, D., Lee, J., Bascuñán, J., Li, Z., and Iwasa, Y. 2020. Prototype REBCO Z1 and Z2 shim coils for ultra high-field. Sci Rep 10(1): 21946.
- Patching, S. G. 2011. NMR structures of polytopic integral membrane proteins. Mol Membr Biol 28(6): 370-397.
- Patching, S. G. 2015. Solid-state NMR structures of integral membrane proteins. Mol Membr Biol 32(5-8): 156-178.
- Patching, S. G. 2016. NMR-active nuclei for biological and biomedical applications. Journal of Diagnostic Imaging in Therapy 3(1): 7-48.
- Patching, S. G. 2017. Synthesis, NMR analysis and applications of isotope-labelled hydantoins. J Diagn Imag Ther 4(1): 3-26.
- Patching, S. G, Edwards, R., and Middleton, D. A. 2009. Structural analysis of uniformly 13C-labelled solids from selective angle measurements at rotational resonance. J Magn Reson 199(2): 242-246.
- Plavec, J. 2022. NMR study on nucleic acids. In: Sugimoto N (Ed) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. DOI: 10.1007/978-981-16-1313-5_8-1
- Pugh, S. M., and Forse, A. C. 2023. Nuclear magnetic resonance studies of carbon dioxide capture. J Magn Reson 346: 107343.
- Pylkkänen, R., Werner, D., Bishoyi, A., Weil, D., Scoppola, E., Wagermaier, W., Safeer, A., Bahri, S., Baldus, M., Paananen, A., Penttilä, M., Szilvay, G. R., and Mohammadi, P. 2023. The complex structure of Fomes fomentarius represents an architectural design for high-performance ultralightweight materials. Sci Adv 9(8): eade5417.
- Quinn, C. M., Zadorozhnyi, R., Struppe, J., Sergeyev, I. V., Gronenborn, A. M., and Polenova, T. 2021. Fast 19F magic-angle spinning nuclear magnetic resonance for the structural characterization of active pharmaceutical ingredients in blockbuster drugs. Anal Chem 93(38): 13029-13037.
- Razew, A., Herail, Q., Miyachiro, M., Anoyatis-Pelé, C., Bougault, C., Dessen, A., Arthur, M., and Simorre, J. P. 2014. Monitoring drug-protein interactions in the bacterial periplasm by solution nuclear magnetic resonance spectroscopy. J Am Chem Soc 146(13): 9252-9260.
- Richards, S. A., and Hollerton, J. C. 2010. Essential practical NMR for organic chemistry. Wiley.
- Safeer, A., Kleijburg, F., Bahri, S., Beriashvili, D., Veldhuizen, E. J. A., van Neer, J., Tegelaar, M., de Cock, H., Wösten, H. A. B, and Baldus, M. 2023. Probing cell-surface interactions in fungal cell walls by high-resolution 1H-detected solid-state NMR spectroscopy. Chemistry 29(1): e202202616.
- Saurel, O., Iordanov, I., Nars, G., Demange, P., Le Marchand, T., Andreas, L. B., Pintacuda, G., and Milon, A. 2017. Local and global dynamics in Klebsiella pneumoniae outer membrane protein A in lipid bilayers probed at atomic resolution. J Am Chem Soc 139(4): 1590-1597.
- Schiavina, M., Bracaglia, L., Rodella, M. A., Kümmerle, R., Konrat, R., Felli, I. C., and Pierattelli, R. 2024. Optimal 13C NMR investigation of intrinsically disordered proteins at 1.2 GHz. Nat Protoc 19(2): 406-440.
- Schiavina, M., Murrali, M. G., Pontoriero, L., Sainati, V., Kümmerle, R., Bermel, W., Pierattelli, R., and Felli, I. C. 2019. Taking simultaneous snapshots of intrinsically disordered proteins in action. Biophys J 117(1): 46-55.
- Schiavina, M., Pontoriero, L., Tagliaferro, G., Pierattelli, R., and Felli, I. C. 2022. The role of disordered regions in orchestrating the properties of multidomain proteins: The SARS-CoV-2 nucleocapsid protein and its interaction with enoxaparin. Biomolecules 12(9): 1302.
- Schubeis, T., Schwarzer, T. S., Le Marchand, T., Stanek, J., Movellan, K. T., Castiglione, K., Pintacuda, G., and 2020. Andreas, L. B. Resonance assignment of the outer membrane protein AlkL in lipid bilayers by proton-detected solid-state NMR. Biomol NMR Assign 14(2): 295-300.
- Shahrajabian, M. H., and Sun, W. 2024. Characterization of intrinsically disordered proteins in healthy and diseased states by nuclear magnetic resonance. Rev Recent Clin Trials 19(3): 176-188.
- Shan, P., Chen, J., Tao, M., Zhao, D., Lin, H., Fu, R., and Yang, Y. 2023. The applications of solid-state NMR and MRI techniques in the study of rechargeable sodium-ion batteries. J Magn Reson 353: 107516.
- Tsiafoulis, C. G., Liaggou, C., Garoufis, A., Magiatis, P., and Roussis, I. G. 2024. Nuclear magnetic resonance analysis of extra virgin olive oil: Classification through secoiridoids. J Sci Food Agric 104(4): 1992-2005.
- Walder, B. J., Conradi, M. S., Borchardt, J. J., Merrill, L. C., Sorte, E. G., Deichmann, E. J., Anderson, T. M., Alam, T. M., and Harrison, K. L. 2021. NMR spectroscopy of coin cell batteries with metal casings. Sci Adv 7(37): eabg8298.
- Wang, X., Akhmedov, N. G., Duan, Y., and Li, B. 2015. Nuclear magnetic resonance studies of CO2 absorption and desorption in aqueous sodium salt of alanine. Energy and Fuels 29(6): 3780-3784.
- Webb, A. 2012. Increasing the sensitivity of magnetic resonance spectroscopy and imaging. Anal Chem 84(1): 9-16.
- Weng, J., Muti, I. H., Zhong, A. B., Kivisäkk, P., Hyman, B. T., Arnold, S. E., and Cheng, L. L. 2022. A nuclear magnetic resonance spectroscopy method in characterization of blood metabolomics for Alzheimer’s disease. Metabolites 12(2): 181.
- Wikus, P., Frantz, W., Kümmerle, R., and Vonlanthen, P. 2022. Commercial gigahertz-class NMR magnets. Supercond Sci Technol 35(3): 033001.
- Xue, K., Sarkar, R., Tosner, Z., Lalli, D., Motz, C., Koch, B., Pintacuda, G., and Reif, B. 2019. MAS dependent sensitivity of different isotopomers in selectively methyl protonated protein samples in solid state NMR. J Biomol NMR 73(10-11): 625-631.
- Yamaoki, Y., Nagata, T., Sakamoto, T., and Katahira, M. 2020. Recent progress of in-cell NMR of nucleic acids in living human cells. Biophys Rev 12(2): 411-417.
- Zheng, A., and Greenbaum, S. G. 2023. NMR studies of polymeric sodium ion conductors-a brief review. Front Chem 11: 1296587.