Abstract :
Antibiotics, also known as antibacterials, kill or inhibit bacterial growth but are ineffective against viruses, fungi, or parasites, often leading to misuse. They are categorized by molecular structure, mode of action, and spectrum of activity. Antimicrobial Resistance (AMR) occurs when pathogens no longer respond to antimicrobial drugs, arising naturally or through acquisition. Resistance mechanisms include enzymatic (most common), genetic and physical. Bacteria produce various β-lactamases, such as Extended Spectrum β-lactamases (ESBLs), AmpC enzymes, and carbapenemase to exert resistance to Beta-Lactam (βL) class of antibiotics. ESBL families include TEM, SHV, and CTX-M, with E. coli being the most prevalent host. Any Gram-Negative Bacteria (GNB) can be an ESBL producer, but most common ones are the Enterobacteriaceae including Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca and Proteus mirabilis. ESBL-producing Enterobacteriaceae (ESBL-E) resist penicillin, aztreonam, and cephalosporins except cephamycins and carbapenems, posing a significant public health risk. Genetic resistance mechanisms involve random mutations and horizontal gene transfer through either of the following processes namely conjugation, transformation, transduction. Physical mechanisms include efflux pump production and decreased porin channels. In some microbiological laboratories, ESBL production are often not determined, rather resistance based on MIC values to third generation Cephalosporins are considered as resistance due to ESBL production. Antibiotic use in agriculture and medicine has increased Multi-drug resistant (MDR) ESBL-producing E. coli and evidenced in retail meat and among meat shop employees. Community-acquired ESBL-E infections are a growing concern, with hospital transmission primarily occurring among patients sharing rooms with ESBL carriers. Empirical and definitive therapies for ESBL-E infections must be adjusted based on Antibiotic Susceptibility Testing (AST). The MERINO trial identified urinary tract infections as the most common source of ESBL-E bacteremia, with E. coli being predominant. For critically ill patients with non-urinary tract infections, Meropenem or Imipenem-cilastatin are recommended. For uncomplicated UTIs, Nitrofurantoin, Cotrimoxazole, and Piperacillin-Tazobactam (Pip-Taz) are effective, while Cotrimoxazole, Fluoroquinolones, and Ceftolozane-tazobactam are suitable for complicated UTIs. New β-lactamase inhibitors like avibactam, vaborbactam, and relebactam are promising for treatment. Misuse of antibiotics, such as inappropriate dosing and duration, contributes to AMR, a growing global challenge. Deaths from AMR, estimated at 1.27 million in 2019, could reach 10 million by 2050. ESBLs drive the use of broad-spectrum antibiotics, accelerating resistance development. Inadequate therapy exacerbates infections, leading to prolonged hospital stays, complications, and increased mortality. Balancing new drug development with resistance emergence is crucial to combat AMR.
Keywords :
Antimicrobial Resistance (AMR), Carbapenemases, Enterobacteriaceae, Treatment., β -lactamase Enzymes.References :
- Infectious Diseases Society of America (IDSA). Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Available from: https://www.idsociety.org/practice-guideline/amr-guidance/.
- Etebu, Ebimieowei & Arikekpar, Ibemologi. (2016). Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. International Journal of Applied Microbiology and Biotechnology Research. 4. 90-101.
- Elroy P. Weledji, Elizabeth K. Weledji, Jules C. Assob, Dickson S. Nsagha, Pros, cons and future of antibiotics, New Horizons in Translational Medicine, Volume 4, Issues 1–4,2017, Pages 9-14, ISSN 2307-5023, doi.org/10.1016/j.nhtm.2017.08.001.(https://www.sciencedirect.com/science/article/pii/S2307502317300243)
- Silva HM. Antibiotics against viruses: Brazilian doctors adrift. Infection Control & Hospital Epidemiology. 2022;43(12):1992–3. doi:10.1017/ice.2021.434
- Antimicrobial resistance [Internet]. European Medicines Agency. 2021. Available from: https://www.ema.europa.eu/en/human-regulatory-overview/public-health-threats/antimicrobial-resistance
- Yadav, Khushbu & Prakash, Satyam. (2016). Antimicrobial Resistance (AMR): A Global Problem. Global Journal of Public Health and Epidemiology. 03. 120-138.
- Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018 Jun 26;4(3):482-501. doi: 10.3934/microbiol.2018.3.482. PMID: 31294229; PMCID: PMC6604941.
- World Health Organization: WHO. Antimicrobial resistance. World Health Organization: WHO [Internet]. 2023 Nov 21; Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
- Habboush Y, Guzman N. Antibiotic Resistance. [Updated 2023 Jun 20]. In: Stat Pearls [Internet]. Treasure Island (FL): Stat Pearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513277/
- Sunarno S, Puspandari N, Fitriana F, Nikmah UA, Idrus HH, Panjaitan NSD. Extended spectrum beta lactamase (ESBL)-producing Escherichia coliand Klebsiella pneumoniae in Indonesia and South East Asian countries: GLASS Data 2018. AIMS Microbiol. 2023 Mar 17;9(2):218-227. Doi: 10.3934/microbiol.2023013. PMID: 37091820; PMCID: PMC10113165.
- Husna A, Rahman MM, Badruzzaman ATM, Sikder MH, Islam MR, Rahman MT, Alam J, Ashour HM. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines. 2023 Oct 30;11(11):2937. Doi: 10.3390/biomedicines11112937. PMID: 38001938; PMCID: PMC10669213.
- Mulani M.S., Kamble E.E., Kumkar S.N., Tawre M.S., Pardesi K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Microbiol. 2019; 10:539. Doi: 10.3389/fmicb.2019.00539.
- Biswas BS. India facing a pandemic of antibiotics-resistant superbugs [Internet]. BBC News. 2022 [cited 2024 May]. Available from: https://www.bbc.com/news/world-asia-india-63059585
- Nogrady B. The fight against antimicrobial resistance [Internet]. Nature. 2023 [cited 2024 May]. Available from: https://www.nature.com/articles/d41586-023-03912-8
- Christina Khadka, Manita Shyaula, Gopiram Syangtan, Shrijana Bista, Reshma Tuladhar, Anjana Singh, Dev Raj Joshi, Lok R. Pokhrel, Prabin Dawadi, Extended-spectrum β-lactamases producing Enterobacteriaceae (ESBL-PE) prevalence in Nepal: A systematic review and meta-analysis, Science of The Total Environment, Volume 901,2023,166164, ISSN 0048-9697, (https://www.sciencedirect.com/science/article/pii/S0048969723047897)
- Aryal S. Beta-Lactamase and Ambler classification [Internet]. Sagar Aryal. 2022 [cited 2024 May]. Available from: https://microbenotes.com/beta-lactamase-and-ambler-classification/
- Peirano, G., Pitout, J.D.D. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Update on Molecular Epidemiology and Treatment Options. Drugs79, 1529–1541 (2019). https://doi.org/10.1007/s40265-019-01180-3
- Gniadkowski M. Evolution and epidemiology of extended-spectrum β-lactamases (ESBLs) and ESBL-producing microorganisms. Clinical Microbiology and Infection. 2001 Nov 1;7(11):597–608.
- Thenmozhi S, Moorthy K, Sureshkumar BT, Suresh M. Antibiotic resistance mechanism of ESBL producing Enterobacteriaceae in clinical field: A review [Internet]. Ijpab.com. [cited 2024 Jun 11]. Available from: http://www.ijpab.com/form/2014%20volume%202,%20issue%203/ijpab-2014-2-3-207-226.pdf
- Tankeshwar A. Beta-lactam antibiotics: Mechanism of action, resistance [Internet]. Microbe Online. 2020 [cited 2024 Jun 17]. Available from: https://microbeonline.com/beta-lactam-antibiotics-mechanism-action-resistance/
- Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010 Mar;54(3):969-76. doi: 10.1128/AAC.01009-09. Epub 2009 Dec 7. PMID: 19995920; PMCID: PMC2825993.
- Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother [Internet]. 2003;51(5):1109–17. Available from: http://dx.doi.org/10.1093/jac/dkg222
- Castanheira M, Simner PJ, Bradford P. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrob Resist. 2021;3:dlab092
- Cambray G, Guerout A-M, Mazel D. Integrons. Annu Rev Genet [Internet]. 2010;44(1):141–66. Available from: http://dx.doi.org/10.1146/annurev-genet-102209-163504.
- Bush, K., Jacoby, G.A., Beta-lactamase classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes. Available from: (accessed 27.10.2012).
- Kumar S, Mukherjee MM, Varela MF. Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily. Int J Bacteriol [Internet]. 2013;2013:1–15. Available from: http://dx.doi.org/10.1155/2013/204141
- Blair JM, Webber MA, Baylay AJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42–51.
- Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006;19:382–402.
- Sharma A, Gupta VK, Pathania R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J Med Res. 2019 Feb;149(2):129-145. doi: 10.4103/ijmr.IJMR_2079_17. PMID: 31219077; PMCID: PMC6563736.
- Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol [Internet]. 2017 [cited 2024 Jun 13];33(3):300. Available from: http://dx.doi.org/10.4103/joacp.joacp_349_15
- Chong Y, Shimoda S, Shimono N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect Genet Evol [Internet]. 2018;61:185–8. Available from: http://dx.doi.org/10.1016/j.meegid.2018.04.005
- Kang C-I, Wi YM, Lee MY, Ko KS, Chung DR, Peck KR, et al. Epidemiology and risk factors of community onset infections caused by extended-spectrum β-lactamase-producing Escherichia coli strains. J Clin Microbiol [Internet]. 2012;50(2):312–7. Available from: http://dx.doi.org/10.1128/jcm.06002-11
- Donati V, Feltrin F, Hendriksen RS, Svendsen CA, Cordaro G, García-Fernández A, et al. Extended-spectrum-beta-lactamases, AmpC beta-lactamases and Plasmid mediated quinolone resistance in Klebsiella spp. From companion animals in Italy. PLoS One [Internet]. 2014;9(3):e90564. Available from: http://dx.doi.org/10.1371/journal.pone.0090564
- Huijbers PM, Van Hoek AH, Graat EA, Haenen AP, Florijn A, Hengeveld PD, et al. Methicillin-resistant Staphylococcus aureus and extended-spectrum and AmpC beta-lactamase-producing Escherichia coli in broilers and in people living and/or working on organic broiler farms. Vet Microbiol. 2015;176:120–5.
- Ahmed HA, Elsohaby I, Elamin AM, El-Ghafar AEA, Elsaid GA, Elbarbary M, et al. Extended-spectrum β-lactamase-producing E. coli from retail meat and workers: genetic diversity, virulotyping, pathotyping and the antimicrobial effect of silver nanoparticles. BMC Microbiol [Internet]. 2023;23(1). Available from: http://dx.doi.org/10.1186/s12866-023-02948-0
- Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infections. Infectious Diseases Society of America 2023; Version 3.0.
- Internet A, Maarten. Mechanisms of emerging resistance associated with non-antibiotic antimicrobial agents: a state-of-the-art review [Internet]. AMR Insights. 2023 [cited 2024 Jun 16]. Available from: https://www.amr-insights.eu/mechanisms-of-emerging-resistance-associated-with-non-antibiotic-antimicrobial-agents-a-state-of-the-art-review/
- Bitsori, Maria MD, PhD; Galanakis, Emmanouil MD, PhD. Treatment of Urinary Tract Infections Caused by ESBL-producing Escherichia coli or Klebsiella pneumoniae. The Pediatric Infectious Disease Journal 38(12):p e332-e335, December 2019. | DOI: 10.1097/INF.0000000000002487
- Khan HA, Baig FK, Mehboob R. Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pacific Journal of Tropical Biomedicine [Internet]. 2017 May;7(5):478–82. Available from: https://www.sciencedirect.com/science/article/pii/S2221169116309509
- Pana ZD, Zaoutis T. Treatment of extended-spectrum β-lactamase-producing Enterobacteriaceae(ESBLs) infections: what have we learned until now? F1000Res. 2018 Aug 29;7:F1000 Faculty Rev-1347. doi: 10.12688/f1000research.14822.1. PMID: 30228863; PMCID: PMC6117850.
- Patel K, Bunachita S, Agarwal AA, Bhamidipati A, Patel UK. A Comprehensive Overview of Antibiotic Selection and the Factors Affecting It. Cureus. 2021 Mar 16;13(3):e13925. doi: 10.7759/cureus.13925. PMID: 33868859; PMCID: PMC8049037.
- Jewell T. ESBLs (Extended Spectrum Beta-Lactamases) [Internet]. Healthline. Healthline Media; 2017. Available from: https://www.healthline.com/health/esbl
- Vázquez-Ucha JC, Arca-Suárez J, Bou G, Beceiro A. New Carbapenemase Inhibitors: Clearing the Way for the β-Lactams. Int J Mol Sci. 2020 Dec 6;21(23):9308. doi: 10.3390/ijms21239308. PMID: 33291334; PMCID: PMC7731173.
- Wilhelm CM, Inamine E, Martins AF, Barth AL. Evaluation of Aztreonam and Ceftazidime/Avibactam Synergism against Klebsiella pneumoniaeby MALDI-TOF MS. Antibiotics (Basel). 2023 Jun 16;12(6):1063.
doi: 10.3390/antibiotics12061063. PMID: 37370382; PMCID: PMC10295265.
- Shaikh S, Fatima J, Shakil S, Rizvi SMohdD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences [Internet]. 2015 Jan;22(1):90–101. Available from: https://www.sciencedirect.com/science/article/pii/S1319562X14000941
- McCarthy K, Avent M. Oral or intravenous antibiotics? Aust Prescr. 2020 Apr;43(2):45-48. doi: 10.18773/austprescr.2020.008. Epub 2020 Apr 1. PMID: 32346210; PMCID: PMC7186270
- Onufrak NJ, Forrest A, Gonzalez D. Pharmacokinetic and Pharmacodynamic Principles of Anti-infective Dosing. Clin Ther. 2016 Sep;38(9):1930-47. doi:10.1016/j.clinthera.2016.06.015. Epub 2016 Jul 20. PMID: 27449411; PMCID: PMC5039113.
- Sime FB, Roberts MS, Roberts JA. Optimization of dosing regimens and dosing in special populations. Clinical Microbiology and Infection. 2015 Oct;21(10):886–93.
- Environment UN. Antimicrobial resistance: a global threat [Internet]. UNEP – UN Environment Programme. 2020. Available from: https://www.unep.org/topics/chemicals-and-pollution-action/pollution-and-health/antimicrobial-resistance-global-threat#:~:text=According%20to%20recent%20estimates%2C%20in%202019%2C%201.27%20million
- Antibiotics [Internet]. www.mdpi.com. [cited 2024 Jun 16]. Available from: https://www.mdpi.com/journal/antibiotics/special_issues/epide_ESBL
- Tarrant C, Colman AM, Jenkins DR, Chattoe-Brown E, Perera N, Mehtar S, Nakkawita WMID, Bolscher M, Krockow EM. Drivers of Broad-Spectrum Antibiotic Overuse across Diverse Hospital Contexts-A Qualitative Study of Prescribers in the UK, Sri Lanka and South Africa. Antibiotics (Basel). 2021 Jan 19;10(1):94. doi: 10.3390/antibiotics10010094. PMID: 33477994; PMCID: PMC7835907.
- Thakur A, Kumar A, Sharma M, Kumar R, Vanita B. Strategies to Minimize the Impact of Antibiotic Resistance in Livestock Production System. International Journal of Current Microbiology and Applied Sciences. 2019 Mar 10;8(03):2293–310.
- Antimicrobial Resistance Collaborators. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. The Lancet [Internet]. 2022 Jan 19;399(10325):629–55. Available from: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02724-0/fulltext
- Sachin M. Patil and Parag Patel. Bactericidal and Bacteriostatic Antibiotics. In Infections and Sepsis Development, Edited by Vincenzo Neri, Lixing Huang and Jie Li, Rijeka. 2021: pp. 1-38