Abstract :
The use of edge computing and the Internet of Things are now considered essential subcategories of contemporary data systems. There is a new wave of data science application deployment approaches and management modularity, also referred to as cloud-native which caters for the required distribution to edge devices. The factors under consideration in this paper are emerging cloud-native technologies that include containerization, microservices, and the serverless model in data science workflows for edge computing and the Internet of Things. The above insights reveal the effectiveness of using this approach in supporting organizations for data science to create highly generalized, safe, and efficient data systems that meet the demands of edge working settings. Innovative city solutions, health care, and industrial Internet of Things are the important areas examined, and additional prospects and concerns are introduced.
Keywords :
Cloud-native, data science, Edge Computing, IoT, Microservices, Serverless ArchitectureReferences :
- Kubernetes, T. (2019). Kubernetes. Retrieved May, 24, 2019.
- Carrión, C. (2022). Kubernetes scheduling: Taxonomy, ongoing issues and challenges. ACM Computing Surveys, 55(7), 1-37.
- Egbuna, O. P. (2024). Machine Learning Applications in Kubernetes for Autonomous Container Management. Journal of Micial Intelligence Research, 4(1), 196-219.
- Chen, Q., He, Y., Yu, G., Xu, C., Liu, M., & Li, Z. (2024). KBMP: Kubernetes-Orchestrated IoT Online Battery Monitoring Platform. IEEE Internet of Things Journal.
- Ai, Z., Zhang, W., Kang, J., Xu, M., Niyato, D., & Turner, S. J. (2024). Identifier-Driven Resource Orchestration With Quantum Computing for Differentiated Services in IoT-MMEC Networks. IEEE Transactions on Vehicular Technology.
- Merlino, G., Tricomi, G., D’agati, L., Benomar, Z., Longo, F., & Puliafito, A. (2024). FaaS for IoT: Evolving Serverless towards Deviceless in I/Oclouds. Future Generation Computer Systems, 154, 189-205.
- Chen, Y., Hu, J., Zhao, J., & Min, G. (2024). Qos-aware computation offloading in Leo satellite edge computing for IoT: A game-theoretical approach. Chinese Journal of Electronics, 33(4), 875-885.
- Hossain, M. D., Sultana, T., Akhter, S., Hossain, M. I., Thu, N. T., Huynh, L. N., … & Huh, E. N. (2023). The role of microservice approach in edge computing: Opportunities, challenges, and research directions. ICT Express.
- Guo, F., Tang, B., Tang, M., & Liang, W. (2023). Deep reinforcement learning-based microservice selection in mobile edge computing. Cluster Computing, 26(2), 1319-1335.
- Gill, S. S., Golec, M., Hu, J., Xu, M., Du, J., Wu, H., … & Uhlig, S. (2024). Edge AI: A taxonomy, systematic review, and future directions. arXiv preprint arXiv:2407.04053.
- Lu, S., Lu, J., An, K., Wang, X., & He, Q. (2023). Edge computing on IoT for machine signal processing and fault diagnosis: A review. IEEE Internet of Things Journal, 10(13), 11093-11116.
- López Escobar, J. J., Díaz-Redondo, R. P., & Gil-Castiñeira, F. (2024). Unleashing the power of decentralized serverless IoT dataflow architecture for the Cloud-to-Edge Continuum: a performance comparison. Annals of Telecommunications, 79(3), 135-148.
- Tusa, F., Clayman, S., Buzachis, A., & Fazio, M. (2024). Microservices and serverless functions—lifecycle, performance, and resource utilisation of edge-based real-time IoT analytics. Future Generation Computer Systems, 155, 204-218.
- Loconte, D., Ieva, S., Pinto, A., Loseto, G., Scioscia, F., & Ruta, M. (2024). Expanding the cloud-to-edge continuum to the IoT in serverless federated learning. Future Generation Computer Systems, 155, 447-462.
- Sarroca, P. G., & Sánchez-Artigas, M. (2024). Mlless: Achieving cost efficiency in serverless machine learning training. Journal of Parallel and Distributed Computing, 183, 104764.
- Egbuna, O. P. (2024). Machine Learning Applications in Kubernetes for Autonomous Container Management. Journal of Artificial Intelligence Research, 4(1), 196-219.