Abstract :
Due to increasing production of plastic and its piling up is a critical concern hence ways to degrade the plastic needs to be sought out. Microplastics (MPs) of the size of micron or less have been found everywhere, even in human blood, highlighting the adversity of the situation. Natural and microbial degradation mechanisms of MPs, focusing on polyethylene (PE) and polyethylene terephthalate (PET) have been explored by the study. Natural degradation is hindered by stability and hydrophobic properties of the polymers. Despite recycling efforts, a significant portion of PET waste ends up in landfills and the environment, posing threats to ecosystems and organisms. MPs are ingested by aquatic organisms, serve as substrates for unwanted microbes, and act as vectors for toxic chemicals. Atmospheric and aquatic fluxes contribute to the transport of MPs from production sources to marine environments. Microorganisms like bacteria, can degrade plastic polymers. Bacterial cultures are found to be effective in degrading MPs through extracellular and intracellular enzyme systems. Bacterial degradation of PE and PET has been demonstrated in laboratory conditions, with varying removal efficiencies and degradation durations. Abiotic factors like oxygen and light help in the PE degradation, while hydrolase enzymes are involved in PET degradation. For effective plastic management, a cyclic bioeconomy based method is necessary, which involves reconsideration of the entire value chain of plastic. Future-proofing plastic waste management requires delinking plastic production from fossil-based raw materials and energy sources. Additionally, addressing agricultural and food waste losses can contribute to reducing the carbon footprint associated with plastic production. Overall, understanding the microbial degradation of plastics offers promising avenues for combating plastic pollution and achieving a more sustainable plastic waste management system.
Keywords :
bis-[2-hydroxyethyl] terephthalate (BHET)., ethylene glycol (EG), Microplastics (MPs), mono-[2-hydroxyethyl] terephthalate (MHET), polyethylene (PE), Polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), Terephthalic Acid (TPA)References :
- Danso D, Chow J, Streit WR. Plastics: Microbial degradation, environmental and biotechnological perspectives. AEM.2019;85(19):ve01095-19.doi:10.1128/AEM.01095-19.
- Liu C, Shi C, Zhu S, Wei R, Yin CC. Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella . Biochem. Biophys. Res. Commun. 2019; 508(1):289-294.doi: 10. 1016/j.bbrc.2018.11.148
- Carr CM, Clarke DJ, Dobson ADW. Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives. Front Microbiol. 2020;11:571265. doi: 10.3389/fmicb.2020.571265.
- PlasticsEurope [Internet].Plastics – the facts 2021; c2021 [cited 2023 June 5]. Available from: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021
- Kawai F, Oda M, Tamashiro T, Waku T, Tanaka N, Yamamoto M, et. al. A novel Ca 2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol. 2014;98:10053-10064.doi:10.1007/s00253- 014-5860-y
- Jaiswal S, Sharma B, Shukla P. Integrated approaches in microbial degradation of plastics. Environ Technol Innov. 2020; 17:100567. doi:10.1016/j.eti.2019.100567
- Hu K, Tian W, Yang Y, Nie G, Zhou P, Wang Y, Duan X, Wang S. Microplastics remediation in aqueous systems: Strategies and technologies. Water Res. 2021; 198:117-144.doi:10.1016/j.watres.2021.117144
- Rummel CD, Jahnke A, Gorokhova E, Küehnel D, Schmitt-Jansen M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett.2017; 4(7):258−267. doi:10.1021/acs.estlett.7b00164
- Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B. Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol. 2019; 53(4):1748−1765.doi:10.1021/acs.est.8b05512
- Mohamed Nor NH, Koelmans AA. Transfer of PCBs from microplastics under simulated gut fluid conditions is biphasic and reversible. Environ Sci Technol. 2019; 53(4):1874−1883.doi:10.1021/acs.est.8b05143
- Dawson AL, Kawaguchi S, King CK, Townsend KA, King R, Huston WM, Nash SM. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat Commun. 2018; 9(1):1001.doi:10.1038/s41467-018-03465-9
- Galloway TS, Cole M, Lewis C. Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol. 2017; 1(5):0116. doi:10.1038/s41559-017-0116
- Duis K, Coors A. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur. 2016;28(1):2. doi:10.1186/s12302-015-0069-y
- Wang J, Tan Z, Peng J, Qiu Q, Li M. The behaviours of microplastics in the marine environment. Mar Environ Res. 2016; 113:7−17. doi:10.1016/j.marenvres.2015.10.014
- Nabi I, Bacha A-U-R, Ahmad F, Zhang L. Application of titanium dioxide for the photocatalytic degradation of macro- and micro-plastics: A review. J Environ Chem Eng. 2021; 9(5):1059-64. https://ma.x-mol.com/paperRedirect/1410687904709922816
- Cózar A, Sanz-Martín M, Martí E, González-Gordillo JI, Ubeda B, Gálvez JA, Irigoien X, Duarte CM. Plastic accumulation in the Mediterranean Sea. PLoS One. 2015; 10(4):e0121762.doi:10.1371/journal.pone.0121762
- Waller CL, Griffiths HJ, Waluda CM, Thorpe SE, Loaiza I, Moreno B, Pacherres CO, Hughes KA. Microplastics in the Antarctic marine system: an emerging area of research. Sci Total Environ. 2017; 598: 220−227. doi:10.1016/j.scitotenv.2017.03.283
- Courtene-Jones W, Quinn B, Gary SF, Mogg AO, Narayanaswamy BEJ. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean. Environ Pollut. 2017; 231: 271-280.doi:10.1016/j.envpol.2017.08.026
- Mierzwa-Hersztek M, Gondek K, Kopec MJ. Degradation of polyethylene and biocomponent-derived polymer materials: An overview. J Polym Environ. 2019; 27(3):600-611. doi: 10.1007/s10924-019-01368-4
- Gewert B, Plassmann MM, MacLeod MJ. Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts. 2015;17(9):1513-1521.doi:10.1039/C5EM00207A.
- Bakir A, Rowland SJ, Thompson RC. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut. 2014; 185:16-2doi:10.1016/j.envpol.2013.10.007.
- Auta H, Emenike C, Fauziah S. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ Pollut. 2017; 231:1552-1559.doi:10.1016/j.envpol.2017.09.043.
- Auta HS, Emenike CU, Jayanthi B, Fauziah SH. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar Pollut Bull. 2018; 127:15-21. doi:10.1016/j.marpolbul.2017.11.036.
- Sivan A, Szanto M, Pavlov V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol. 2006;72(2):346-352.doi:10.1007/s00253-005-0259-4.
- Uscátegui YL, Arévalo FR, Díaz LE, Cobo MI, Valero MF. Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. J Biomater Sci Polym Ed. 2016; 27(18):1860-1879.doi:10.1080/09205063.2016.1239948.
- Yang J, Yang Y, Wu WM, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol. 2014;48(23):13776-13784.doi:10.1021/es504038a
- Vasile C, Pascu M. Practical guide to polyethylene. Shrewsbury (UK): RAPRA Technology; 2005.
- Singh B, Sharma N. Mechanistic implications of plastic degradation.Polym Degrad.Stab.2008
- Peacock AJ. Handbook of polyethylene: Structures, properties and applications. New York: Marcel Dekker; 2000.
- Albertsson AC. Long Term Properties of Polyolefins. Berlin, Heidelberg:Springer;2004, vol. 169.
- Tolinski M. Additives for polyolefins getting the most out of polypropylene, polyethylene and TPO. 1st ed. Somerset (NJ): Oxford William Andrew Pub.; 2009 [cited 2023 June 12]. Available from: http://www.123library.org/book_details/?id=43997
- Vasile C. Handbook of polyolefins. New York: CRC press; 2004
- Pritchard G. Plastics Additives. Dordrecht(Netherlands):Springer;1998,
- Guebitz GM, Cavaco-Paulo A. Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers. Trends Biotechnol. 2008;26:32-38. doi:10.1016/j.tibtech.2007.10.003
- Wang X, Lu D, Jönsson L, Hong F. Preparation of a PET H Hydrolyzing Lipase from Aspergillus oryzae by the Addition of Bis (2- hydroxyethyl) terephthalate to the culture medium and enzymatic modification of PET Fabrics. Eng. Life Sci. 2008; 8:268-276. doi:10.1002/elsc.200700058
- Ronkvist ÅM, Xie W, Lu W, Gross RA. Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate). Macromolecules. 2009; 42:5128-5138. doi:10.1021/ma9005318
- Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science. 2016; 351: 1196-1199. doi:10.1126/science.aad6359
- Sulaiman S, You D-J, Kanaya E, Koga Y, Kanaya S. Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase. Biochemistry. 2014; 53:1858-1869. doi:10.1021/bi401561p
- Bollinger A, Thies S, Knieps-Grünhagen E, Gertzen C, Kobus S, Höppner A, et al. A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri – Structural and functional insights. Front Microbiol. 2020; 11:114. doi:10.3389/fmicb.2020.00114
- Wilkes RA, Aristilde L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. J Appl Microbiol. 2017; 123:582–593. doi:10.1111/jam.13472
- Sharma B, Dangi AK, Shukla P. Contemporary enzyme based technologies for bioremediation: a review. J Environ Manag. 2018; 210:10–22. doi:10.1016/j.jenvman.2017.12.075.
- Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature. 2020; 580:216–219. doi:10.1038/s41586-020-2149-4.
- Sanin SL, Sanin FD, Bryers JD. Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Process Biochem. 2003; 38:909–914.doi:10.1016/S0032-9592(02)00173-5.
- Tribedi P, Das Gupta A, Sil AK. Adaptation of Pseudomonas sp. AKS2 in biofilm on low-density polyethylene surface: An effective strategy for efficient survival and polymer degradation. Bioresour Bioprocess. 2015; 2:14. doi:10.1186/s40643-015-0044-x.
- Wang YZ, Zhou Y, Zylstra GJ. Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D. Environ Health Perspect. 1995; 103:9–12.doi:10.1289/ehp.95103s49.
- Zhu X. The plastic cycle – An unknown branch of the carbon cycle. Front Mar Sci. 2021; 7:1227. doi:10.3389/fmars.2020.609243
- Plastics Europe [Internet]. Plastics – The facts 2020; c2020[cited 2023 June 12]. Available from:https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020.
- Pleissner D, Qi Q, Gao C, Rivero CP, Webb C, Lin CSK, et al. Valorization of organic residues for the production of added value chemicals: a contribution to the bio-based economy. In: Advances on Biorefinery Engineering and Food Supply Chain Waste Valorisation. 2016; 116:3–16 doi:10.1016/j.bej.2015.12.016.
- FAO. Food wastage footprint. Full-cost accounting (Final Report). Food and Agriculture Organization of the United Nations; 2014.
- Loannidou SM, Pateraki C, Ladakis D, Papapostolou H, Tsakona M, Vlysidis A,et al.Sustainable production of biobased chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context.BioresourTechnol.2020;307:123093.doi:10.1016/j.biortech.2020.123093.
- De D, Sai MSN, Aniya V, Satyavathi B. Strategic biorefinery platform for green valorization of agro-industrial residues: A sustainable approach towards biodegradable plastics. JClean Prod. 2021; 290:125184. doi:10.1016/j.jclepro.2020.125184.
- Moriana R, Vilaplana F, Ek M. Forest residues as renewable resources for bio-based polymeric materials and bioenergy: Chemical composition, structure and thermal properties. Cellulose. 2015; 22:3409–3423.doi:10.1007/s10570-015-0738-4.
- Devadas VV, Khoo KS, Chia WY, Chew KW, Munawaroh HSH, Lam M-K, et al. Algae biopolymer towards sustainable circular economy. Bioresour Technol. 2021; 325:124702.doi:10.1016/j.biortech.2021.124702.
- Tsang YF, Kumar V, Samadar P, Yang Y, Lee J, Ok YS, et al. Production of bioplastic through food waste valorization. Environ Int. 2019; 127:625–644. doi:10.1016/j.envint.2019.03.076.
- Kjeldsen A, Price M, Lilley C, Guzniczak E[Internet]. A review of standards for biodegradable plastics; c 2019 [cited 2023 June 22].
- SAPEA [Internet]. Biodegradability of plastics in open environment. Science Advice for Policy by European Academies; c2021. [cited 2023 June 12]. doi:10.26356/biodegradabilityplastics.
- Taufik D, Reinders MJ, Molenveld K, Onwezen MC. The paradox between the environmental appeal of bio-based plastic packaging for consumers and their disposal behaviour. Sci Total Environ. 2020; 705:135820. doi:10.1016/j.scitotenv.2019.135820.
- Dilkes-Hoffman L, Ashworth P, Laycock B, Pratt S, Lant P. Public attitudes towards bioplastics – Knowledge, perception and end-of-life management. Resour Conserv Recycl. 2019; 151:104479. doi:10.1016/j.resconrec.2019.104479.
- Maga D, Hiebel M, Thonemann N. Life cycle assessment of recycling options for polylactic acid. Resour Conserv Recycl. 2019; 148:126-136.doi:10.1016/j.resconrec.2019.05.018.
- Lamberti FM, Román-Ramírez LA, Wood J. Recycling of bioplastics: routes and benefits. J Polym Environ. 2020; 28:2551-2571.doi:10.1007/s10924-020-01795-8.
- Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881-890.doi:10.3201/eid0809.020063.
- Wei R, Oeser T, Barth M, Weigl N, Lubs A, Schulz-Siegmund M, et al. Turbidimetric analysis of the enzymatic hydrolysis of polyethylene terephthalate nanoparticles. J Mol Catal B Enzym. 2014; 103:72-78. doi:10.1016/j.molcatb.2013.08.010.
- Roth C, Wei R, Oeser T, Then J, Foellner C, Zimmermann W, Strater N. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Appl Microbiol Biotechnol. 2014; 98:7815-7823. doi:10.1007/s00253-014-5672-0.
- Takei D, Washio K, Morikawa M. Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane. Biotechnol lett.(2008); 30(8):1447–1452. doi:10.1007/s10529-008-9710-9.
- Mukherjee S, Kundu PP. Alkaline fungal degradation of oxidized polyethylene in black liquor: Studies on the effect of lignin peroxidases and manganese peroxidases. J Appl Polym Sci. 2014; 131:40738. doi: 10.1002/app.40738.
- Negoro S, Shibata N, Tanaka Y, et al. Three-dimensional structure of nylon hydrolase and mechanism of nylon-6 hydrolysis. J Biol Chem. 2012; 287(7):5079-5090. doi: 10.1074/jbc.M111.321992. Epub 2011 Dec 19. PMID: 22187439; PMCID: PMC328164.
- Akutsu Y, Nakajima-Kambe T, Nomura N, Nakahara T. Purification and Properties of a Polyester Polyurethane-Degrading Enzyme from Comamonas acidovorans TB-35. Appl Environ Microbiol. 1998; 64(1):62-67. doi: 10.1128/AEM.64.1.62-67.1998. PMID: 16349494; PMCID: PMC124672.
- Giacomucci L, Raddadi N, Soccio M, Lotti N, Fava F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol. 2019; 52:35-41. ISSN 1871-6784.
- Yan F, Wei R, Cui Q, Bornscheuer UT, Liu YJ. Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microb Biotechnol. 2021; 14(2):374-385. doi: 10.1111/1751-7915.13580. Epub 2020 Apr 28. PMID: 32343496; PMCID: PMC7936307.
- Stepien AE, Zebrowski J, Piszczyk Å, Boyko VV, Riabov SV, Dmitrieva T, Bortnitskiy VI, Gonchar M, Wojnarowska-Nowak R, Ryszkowska J. Assessment of the impact of bacteria Pseudomonas denitrificans, Pseudomonas fluorescens, Bacillus subtilis and yeast Yarrowia lipolytica on commercial poly(ether urethanes). Polymer Testing. 2017;63:484-493. ISSN 0142-9418. doi: 10.1016/j.polymertesting.2017.08.038.
- Obradors N, Aguilar J. Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Appl Environ Microbiol. 1991;57(8):2383-2388. doi: 10.1128/aem.57.8.2383-2388.1991. PMID: 1768106; PMCID: PMC183579.
- Plastics Europe [Internet]. Plastics – The facts 2022; c2022[cited 2023 June 29]. Available from: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022-2/.