Abstract :
Despite of Indonesia’s vast solar energy potential according to the Indonesian Ministry of Energy and Mineral Resources, Indonesia’s total installed capacity of rooftop solar photovoltaic (PV) is very far from Indonesia’s target of 3.6 GW in 2025. Indonesia once applied net metering scheme for rooftop solar PV policy and was expected to be able to boost rooftop solar PV growth. A system dynamics approach is used in the research to develop an assessment model to evaluate the policies’ impact on residential rooftop solar PV system growth. A Causal Loop Diagram was established then transformed into Stock and Flow Diagram (SFD) using software Vensim PLE 10.1.3, which was used to simulate several policies’ scenarios related to residential rooftop solar PV adoption and CO2 emissions reduction. Ten scenarios were simulated in this study involving three groups of intervention: initial net metering tariff, reduction on initial solar PV cost, upper limit of ROI, and combination of initial net metering tariff and initial solar PV cost reduction. The simulations revealed that combination of increasing net metering tariff to 80% & initial cost reduction 30% has the highest potential solar PV installations, the highest CO2 emissions reduction, and the lowest accumulation cost of net metering in 2030. This study can be used as reference by the policy makers in Indonesia to formulate the optimum policy to boost rooftop solar PV growth as the simulations shows that residential rooftop solar PV with the right intervention can meet the government’s target of rooftop solar PV in 2030.
Keywords :
Emission Reduction, Net Metering, Solar PV., system dynamicsReferences :
- BPS Report. (2023). statistical-yearbook-of-indonesia-2023. Report. https://www.bps.go.id/id/publication/2023/02/28/18018f9896f09f03580a614b/statistik-indonesia-2023.html
- Zohuri, B., & McDaniel, P. (2021). Population growth driving energy demand. In Introduction to Energy Essentials (pp. 1–42). Elsevier. https://doi.org/10.1016/B978-0-323-90152-9.00001-3
- Dat, N. D., Hoang, N., Huyen, M. T., Huy, D. T. N., & Lan, L. M. (2020). Energy consumption and economic growth in Indonesia. International Journal of Energy Economics and Policy, 10(5), 601–607. https://doi.org/10.32479/ijeep.10243
- (2022b). INDONESIA ENERGY TRANSITION OUTLOOK 2022. www.irena.org
- (2022). An Energy Sector Roadmap to NZE in Indonesia. www.iea.org/t&c/
- RUPTL PT PLN Th. 2021-2030, RUPTL 2021-2030 1 (2021).
- Rencana Umum Energi Nasional (RUEN), RUEN 2017 1 (2017). https://www.esdm.go.id/assets/media/content/content-rencana-umum-energi-nasional-ruen.pdf
- Silalahi, D. F., Blakers, A., Stocks, M., Lu, B., Cheng, C., & Hayes, L. (2021). Indonesia’s vast solar energy potential. Energies, 14(17). https://doi.org/10.3390/en14175424
- Veldhuis, A. J., & Reinders, A. H. M. E. (2013). Reviewing the potential and cost-effectiveness of grid-connected solar PV in Indonesia on a provincial level. In Renewable and Sustainable Energy Reviews (Vol. 27, pp. 315–324). Elsevier Ltd.
- (2022). Indonesia-Solar-Energy-Outlook-ISEO-2023. Indonesia Solar Energy Oulook 2023, 30–35. https://iesr.or.id/pustaka/indonesia-solar-energy-outlook-2023
- Marcuzzo, R., de Araujo, W. C., Maldonado, M. U., & Vaz, C. R. (2022). A multi-country simulation-based study for end-of-life solar PV panel destination estimations. Sustainable Production and Consumption, 33, 531–542. https://doi.org/10.1016/j.spc.2022.07.021
- Salim, H. K., Stewart, R. A., Sahin, O., & Dudley, M. (2021). Dynamic modelling of Australian rooftop solar photovoltaic product stewardship transition. Waste Management, 127, 18–29. https://doi.org/10.1016/j.wasman.2021.04.030
- Sani, K., Siallagan, M., Putro, U. S., & Mangkusubroto, K. (2018). Indonesia energy mix modelling using system dynamics. International Journal of Sustainable Energy Planning and Management, 18, 29–52. https://doi.org/10.5278/ijsepm.2018.18.3
- Hsu, C. W. (2012). Using a system dynamics model to assess the effects of capital subsidies and feed-in tariffs on solar PV installations. Applied Energy, 100, 205–217. https://doi.org/10.1016/j.apenergy.2012.02.039
- Al-Refaie, A., & Lepkova, N. (2022). Impacts of Renewable Energy Policies on CO2 Emissions Reduction and Energy Security Using System Dynamics: The Case of Small-Scale Sector in Jordan. Sustainability (Switzerland), 14(9). https://doi.org/10.3390/su14095058
- Hidayatno, A., Setiawan, A. D., Wikananda Supartha, I. M., Moeis, A. O., Rahman, I., & Widiono, E. (2020). Investigating policies on improving household rooftop photovoltaics adoption in Indonesia. Renewable Energy, 156, 731–742. https://doi.org/10.1016/j.renene.2020.04.106
- Book, ·. (2004). Introduction to system thinking and causal loop diagrams. www.planteco.lu.se
- (2022a). INDONESIA ENERGY PROFILE. https://www.irena.org/-/media/Files/IRENA/Agency/Statistics/Statistical_Profiles/Asia/Indonesia_Asia_RE_SP.pdf
- EBTKE-MEMR. (2024). Monitoring PLTS Atap On-Grid PLN Februari 2024. https://data.worldbank.org/indicator/FR.INR.LEND?locations=ID
- Pujantoro, M. (2019). Levelized Cost of Electricity in Indonesia. www.iesr.or.id
- (2018). Bank Indonesia Foreign Exchange. (Accessed 21-Mar-2024. https://www.bi.go.id/en/statistik/informasi-kurs/transaksi-bi/default.aspx
- (2018b). statistik-PLN-2018.
- Haryadi, F. N., Hakam, D. F., Ajija, S. R., Simaremare, A. A., & Aditya, I. A. (2021). The analysis of residential rooftop PV in Indonesia’s electricity market. Economies, 9(4). https://doi.org/10.3390/economies9040192
- (2018a). PLN Tariff Adjustment. (Accessed on 30 March 2024). https://web.pln.co.id/pelanggan/tarif-tenaga-listrik/tariff-adjustment
- IESR. (2022). Indonesia-Solar-Energy-Outlook-ISEO-2023. Indonesia Solar Energy Oulook 2023, 30–35. https://iesr.or.id/pustaka/indonesia-solar-energy-outlook-2023