Abstract :
In this study, soil composting and bioaugmentation processes were combined to remediate diesel-contaminated soil. Deciduous corn flour, wheat bran, and sawdust were used as co-substrates for soil composting. In addition, consortia of bacteria from the inner tract of the Tenebrio molitor larva were isolated and selected for the bioaugmentation of the composting reactors. It was observed that the isolated inoculum enhanced the treatment and combined with deciduous corn flour, a higher efficiency (87%) and a better removal rate (9.10% diesel removed/week) were registered. In soils with a concentration of 11,796 mg diesel/kg, this combined treatment reduced, in 10 weeks, the pollutant to values below the maximum permissible limits in soils stated by Mexican regulations.
Keywords :
bioaugmented composting, diesel-contaminated soil, hydrocarbon bacteria, Tenebrio molitorReferences :
- Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes, and future research needs. Biotechnology Advances, 33(6), 745–755. https://doi.org/10.1016/j.biotechadv.2015.05.003
- Koshlaf, E., Shahsavari, E., Aburto-Medina, A., Taha, M., Haleyur, N., Makadia, T. H., Morrison, P. D., Ball, A. S. (2016). Bioremediation potential of diesel-contaminated Libyan soil. Ecotoxicology and Environmental Safety, 133, 297–305. https://doi.org/10.1016/j.ecoenv.2016.07.027
- Namkoong, W., Hwang, E.-Y., Park, J. S., Choi, J. Y. (2002). Bioremediation of dieselcontaminated soil with composting. Environmental Pollution, 119(1), 23–31. https://doi.org/10.1016/S0269-7491(01)00328-1
- (2019). Secretaria del Medio Ambiente y Recursos Naturales. NORMA Oficial Mexicana NOM-138-SEMARNAT/SSA1-2012, Límites máximos permisibles de hidrocarburos en suelos y lineamientos para el muestreo en la caracterización y especificaciones para la remediación. Ciudad de México.
- Cui, J. Q., He, Q. S., Liu, M. H., Chen, H., Sun, M. B., Wen, J. P. (2020). Comparative study on different remediation strategies applied in petroleum-contaminated soils. International Journal of Environmental Research and Public Health, 17(5), 1606 https://doi.org/10.3390/ijerph17051606
- Borowik, A., Wyszkowska, J. (2018). Bioaugmentation of soil contaminated with diesel oil. Journal of Elementology, 23(4), 1161–1178. https://doi.org/10.5601/jelem.2018.23.1.1627
- Feng, L., Jiang, X., Huang, Y., Wen, D., Fu, T., Fu, R. (2021). Petroleum hydrocarbon contaminated soil bioremediation assisted by isolated bacterial consortium and sophorolipid. Environmental Pollution, 273, 116476. https://doi.org/10.1016/j.envpol.2021.116476
- Chen, Y. A., Liu, P. W. G., Whang, L. M., Wu, Y. J., Cheng, S. S. (2019). Biodegradability and microbial community investigation for soil contaminated with diesel blending with biodiesel. Process Safety and Environmental Protection, 130, 115–125. https://doi.org/10.1016/j.psep.2019.07.001
- Ramos-Elorduy, J., González, E. A., Hernández, A. R., Pino, J. M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to Recycle Organic Wastes and as Feed for Broiler Chickens. Journal of Economic Entomology, 95(1), 214–220. https://doi.org/10.1603/0022-0493-95.1.214
- Wu, Q., Tao, H., Wong, M. H. (2019). Feeding and metabolism effects of three common microplastics on Tenebrio molitor L. Environmental Geochemistry and Health, 41(1), 17–26. https://doi.org/10.1007/s10653-018-0161-5
- Yang, Y., Yang, J., Wu, W.-M., Zhao, J., Song, Y., Gao, L., Yang, R. y Jiang, L. (2015). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environmental Science y Technology, 49(20), 12087– 52 12093. https://doi.org/10.1021/acs.est.5b02663
- Yang, S.-S., Brandon, A. M., Andrew Flanagan, J. C., Yang, J., Ning, D., Cai, S.-Y., Fan, H-Q., Wang, Z-Y., Ren, J., Benbow, E., Ren, N-Q., Waymouth, R. M., Zhou, J., Criddle, C. S., Wu, W.-M. (2018a). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979– 989.
https://doi.org/10.1016/J.CHEMOSPHERE.2017.10.117
- Yang, S.-S., Wu, W.-M., Brandon, A. M., Fan, H.-Q., Receveur, J. P., Li, Y., Wang, Z-Y., Fan, R.,McClellan, R. L., Gao, S-H., Ning, D., Phillips, D. H., Peng, B-Y., Wang, H., Cai, S-Y., Li, P., Cai, W-W., Yang, J., Zheng, M., Ren, J.,Zhang, Y-L., Gao, J., Xing, D., Ren, N-Q., Waymouth, R. M., Zhou, J., Tao, H-C., Picard, C. J., Benbow, M. E., Criddle, C. S. (2018b). Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 212, 262–271.
https://doi.org/10.1016/J.CHEMOSPHERE.2018.08.07
- Brandon, A. M., Gao, S.-H., Tian, R., Ning, D., Yang, S.-S., Zhou, J., Wu, W-M., Criddle, C. S. (2018). Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor ) and Effects on the Gut Microbiome. Environmental Science y Technology, 52(11), 6526–6533. https://doi.org/10.1021/acs.est.8b02301
- Jung, J., Heo, A., Woo Park, Y., Ji Kim, Y., Koh, H., Park, W. (2014). Gut microbiota of tenebrio molitor and their response to environmental change. Journal of Microbiology and Biotechnology, 24(7), 888–897.
https://doi.org/10.4014/jmb.1405.05016
- Osimani, A., Milanović, V., Cardinali, F., Garofalo, C., Clementi, F., Pasquini, M., Riolo, P., Ruschioni, S., Isidoro, N., Loreto, N., Franciosi, E., Tuohy, K., Petruzzelli, A., Foglini, M., Gabucci, C., Tonuccic, F., Aquilanti, L. (2018). The bacterial biota of laboratory reared edible mealworms (Tenebrio molitor L.): From feed to grass. International Journal of Food Microbiology, 272, 49–60. https://doi.org/10.1016/j.ijfoodmicro.2018.03.001
- Reyes, I. (1996). Fundamentos teórico-prácticos de temas selectos de la ciencia del suelo. México: Universidad Autónoma Metropolitana, Unidad Iztapalapa. ISBN: 9706208984, 9789706208989
- (2000). Secretaria del Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana NOM-021-SEMARNAT-2000 Que establece las 44 especificaciones de fertilidad, salinidad y clasificación de suelos. Estudio, muestreo y análisis. Ciudad de México.
- Fernández, L. C., Rojas, N. G., Ramírez, M. E., Roldán, T. G., Zegarra, H. G., Uribe, R., Reyes, R. J., Flores, D., Arce, J. M. (2006). Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. México: Instituto Mexicano del Petróleo. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/Libros2011/CG008215.pdf
- 2007 United States Environmental Protection Agency Method 8015C: Nonhalogenated organics by gas chromatography https://www.epa.gov/sites/default/files/2015-12/documents/8015c.pdf
- (2003). Manual de laboratorio para la identificación y prueba de susceptibilidad a los antimicrobianos de patógenos bacterianos de Importancia para la salud pública en el mundo en desarrollo. Ginebra : Organización Mundial de la Salud. https://www.who.int/publications/i/item/WHO-CDS-CSR-RMD-2003.6
- Castañeda, M. T. (2003). Microbiología aplicada manual de laboratorio (UAM-A, Ed.). Ciudad de México: Universidad Autónoma Metropolitana, Azcapotzalco
- Njoki Mwaura, A., Mbatia Nyambura, B., Kirwa Muge, E., Wafula Okanya, P. (2018). Screening and Characterization of Hydrocarbonoclastic Bacteria Isolated from Oil contaminated Soils from Auto Garages. International Journal of Microbiology and Biotechnology, 3(1), 11. https://doi.org/10.11648/j.ijmb.20180301.13
- (2020). Propiedades Físicas | Portal de Suelos de la FAO | Organización de las Naciones Unidas para la Alimentación y la Agricultura. Consultado el 18 de febrero, 2021, de: http://www.fao.org/soils-portal/soil-survey/propiedades-del-suelo/propiedades-fisicas/es/