Abstract :
The present research used the electrospinning method to apply a polyvinyl alcohol/titanium dioxide (PVA/TiO2) layer over a conductive textile (70 % polyester and 30 % cotton) sheet. PVA with 10, 12.5, and 15 g concentrations was mixed into 100 ml distilled water. Then, each PVA solution was mixed with 1.5 wt.% of TiO2. Afterward, the electrospinning method applied a PVA/TiO2 composite onto a conductive textile sheet. Various characterizations were conducted, such as resistivity, scanning electron microscopy (SEM), Fourier transforming infrared (FTIR), and photocatalytic activity. The resistivity result is 9.5, 10, and 10 for A, B, and C samples. According to SEM investigation, higher PVA concentration leads to higher fiber sizes around 0.65 µm. An increase in PVA content does not affect the bands that were formed. The size of the fiber diameter contributed to the photocatalytic activity of MB. A smaller fiber diameter could enhance photocatalytic activity.
Keywords :
Conductive textile, electrospinning, FTIR, Photocatalytic, PVA/TiO2 composite, SEMReferences :
- S. Wang and S. Salmon, “Progress toward circularity of polyester and cotton textiles,” Sustain. Chem., vol. 3, no. 3, pp. 376–403, 2022.
- S. Islam Hemwati Nandan, S. Ahmed, S. Islam, M. Arifuzzaman, A. Saiful Islam, and S. Akter, “Relationship in between Strength and Polyester
- Content Percentage of Cotton Polyester Blended Woven Fabrics,” J. Cloth. Sci., vol. 2019, no. 1, pp. 1–6, 2019, doi: 10.5923/j.clothing.20190601.01.
- Y. Cheng et al., “A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching,” Chem. Eng. J., vol. 355, no. June 2018, pp. 290–298, 2019, doi: 10.1016/j.cej.2018.08.113.
- A. Thorvaldsson, P. Edvinsson, A. Glantz, K. Rodriguez, P. Walkenström, and P. Gatenholm, “Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers,” Cellulose, vol. 19, no. 5, pp. 1743–1748, 2012, doi: 10.1007/s10570-012-9751-z.
- X. Liu, Q. Chen, L. Lv, X. Feng, and X. Meng, “Preparation of transparent PVA/TiO2 nanocomposite films with enhanced visible-light photocatalytic activity,” Catal. Commun., vol. 58, pp. 30–33, 2015, doi: 10.1016/j.catcom.2014.08.032.
- E. E. Abdel-Hady, H. F. M. Mohamed, M. O. Abdel-Hamed, and M. M. Gomaa, “Physical and electrochemical properties of PVA/TiO2 nanocomposite membrane,” Adv. Polym. Technol., vol. 37, no. 8, pp. 3842–3853, 2018, doi: 10.1002/adv.22167.
- Y. Song, J. Zhang, H. Yang, S. Xu, L. Jiang, and Y. Dan, “Preparation and visible light-induced photo-catalytic activity of H-PVA/TiO 2 composite loaded on glass via sol-gel method,” Appl. Surf. Sci., vol. 292, pp. 978–985, 2014, doi: 10.1016/j.apsusc.2013.12.090.
- A. D. S. Montallana, B. Z. Lai, J. P. Chu, and M. R. Vasquez, “Enhancement of photodegradation efficiency of PVA/TiO2 nanofiber composites via plasma treatment,” Mater. Today Commun., vol. 24, no. April, 2020, doi: 10.1016/j.mtcomm.2020.101183.
- K. Garg and G. L. Bowlin, “Electrospinning jets and nanofibrous structures,” Biomicrofluidics, vol. 5, no. 1, 2011, doi: 10.1063/1.3567097.
- Nasikhudin, E. P. Ismaya, M. Diantoro, A. Kusumaatmaja, and K. Triyana, “Preparation of PVA/TiO2 Composites Nanofibers by using
- Electrospinning Method for Photocatalytic Degradation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 202, no. 1, 2017, doi: 10.1088/1757899X/202/1/012011.
- M. Q. Khan et al., “Self-cleaning properties of electrospun PVA/TiO2 and PVA/ZnO nanofibers composites,” Nanomaterials, vol. 8, no. 9, 2018, doi: 10.3390/nano8090644.
- J. Hsieh and S. Hung, “The effect of cu: Ag atomic ratio on the properties of sputtered cu-ag alloy thin films,” Materials (Basel)., vol. 9, no. 11, 2016, doi: 10.3390/ma9110914.
- J. B. Liu, L. Meng, and Y. W. Zeng, “Microstructure evolution and properties of Cu-Ag microcomposites with different Ag content,” Mater. Sci. Eng. A, vol. 435–436, pp. 237–244, 2006, doi: 10.1016/j.msea.2006.07.125.
- R. S. Mishra and A. S. Khanna, “Formulation and performance evaluation of hydroxyl terminated hyperbranched polyesters based poly (esterurethane-urea) coatings on mild steel,” Prog. Org. Coatings, vol. 72, pp. 769–777, 2011, doi: 10.1016/j.porgcoat.2011.08.009.
- D. T. M. Nguyen, K. D. G. Huynh, T. T. D. Nguyen, V. T. Huynh, P. T. Nguyen, and L. T. B. Nguyen, “Fabrication and characterization of polyvinyl alcohol/TiO2 membrane immersed in simulated body fluid for biomedical application,” Vietnam J. Chem., vol. 61, no. 6, pp. 741–754, 2023, doi: 10.1002/vjch.202300015.
- A. Allafchian, S. A. H. Jalali, F. Hosseini, and M. Massoud, “Ocimum basilicum mucilage as a new green polymer support for silver in magnetic nanocomposites: Production and characterization,” J. Environ. Chem. Eng., vol. 5, no. 6, pp. 5912–5920, 2017, doi: 10.1016/j.jece.2017.11.023.
- A. Rehab and N. Salahuddin, “Nanocomposite materials based on polyurethane intercalated into montmorillonite clay,” Mater. Sci. Eng. A, vol. 399, no. 1–2, pp. 368–376, 2005, doi: 10.1016/j.msea.2005.04.019.
- T. Iqbal et al., “Surfactant assisted synthesis of ZnO nanostructures using atmospheric pressure microplasma electrochemical process with antibacterial applications,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 228, no. November 2017, pp. 153–159, 2018, doi: 10.1016/j.mseb.2017.11.027.
- G. A. Phalak, D. M. Patil, and S. T. Mhaske, “Synthesis and characterization of thermally curable guaiacol based poly(benzoxazine-urethane) coating for corrosion protection on mild steel,” Eur. Polym. J., vol. 88, pp. 93–108, 2017, doi: 10.1016/j.eurpolymj.2016.12.030.
- H. S. Mansur and H. S. Costa, “Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications,” Chem. Eng. J., vol. 137, no. 1, pp. 72–83, 2008, doi: 10.1016/j.cej.2007.09.036.
- A. Fahmy, B. Anis, P. Szymoniak, K. Altmann, and A. Schönhals, “Graphene Oxide/Polyvinyl Alcohol–Formaldehyde Composite Loaded by Pb Ions: Structure and Electrochemical Performance,” Polymers (Basel)., vol. 14, no. 11, 2022, doi: 10.3390/polym14112303.