Abstract :
We have analyzed magnetic cloud related geomagnetic storms detected during the period of solar cycle 23 and 24 with disturbances in solar wind plasma parameters. We have observed that all the MC related geomagnetic storms are accompanying with disturbances in solar wind plasma parameters. The magnitude of magnetic cloud related geomagnetic storms is soundly correlated with peak disturbances values of solar wind plasma parameters solar wind plasma velocity (SWPV), solar wind plasma density (SWPD), solar wind plasma temperature (SWPT), interplanetary magnetic fields (IMFB) and southward component of interplanetary magnetic fields (IMFBz). Large positive correlation with correlation coefficient 0.60 have found between magnitude of MC related GMS and peak value of related disturbances in IMFB and 0.67 between magnitude of MC related geomagnetic storms and peak value of associated disturbances in IMFBz. Additionally positive correlations with correlation coefficient 0.54 have been found between magnitude of MC related GMS and peak value of associated disturbances in solar wind plasma temperature ,0.40 between magnitude of MC related GMS and peak value of associated disturbances in solar wind plasma velocity, 0.27 between magnitude of MC related geomagnetic storms and peak value of disturbances in soar wind plasma density.
Keywords :
Geomagnetic storms, Interplanetary magnetic fields, Magnetic Clouds, solar wind plasma temperature., solar wind plasma velocity, Southward Component of Interplanetary magnetic fieldsReferences :
- Akasofu, S.-I (2018). A review of the current understanding in the study of geomagnetic storms. International Journal of Earth Science and Geophysics, 4 (1).
- Akasofu, S.-I., Chapman, S., & Venkatesan, D. . (1963). The main phase of great magnetic storms. Journal of Geophysical Research, 68 (11), 3345–3350.
- Balasubramaniam, K.S., Keil, S.L., and Smartt, R.N., Eds. (1996). Solar Drivers of Interplanetary and Terrestrial Disturbances, ASP Conference Series.
- Chen, M. W., Schulz, M., & Lyons, L. R. (1997). Modeling of ring current formation and decay: A review. Washington DC American Geophysical Union Geophysical Monograph Series, 98, 173–186.
- Choraghe, K., Raghav, A., Chakrabarty, D., Kasthurirangan, S., & Bijewar, N. (2021). Properties of the recovery phase of extreme storms. Journal of Geophysical Research: Space Physics, 126 (9), e2020JA028685.
- Crooker, N.U., Cliver, E.W. “Postmodern view of M-regions”. J.Geophys. Res. 99, 23383, (1994). Crooker, N.U., et al 2000, Crooker, N.U., et al 2000, Crooker, N.U. J. Atmos. Sol–Terr. Phys. 62, 1071, (2000).
- Daglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Reviews of Geophysics, 37 (4), 407–438.
- Dessler, A., Francis, W., & Parker, E. (1960). Geomagnetic storm sudden-commencement rise times. Journal of Geophysical Research, 65 (9), 2715–2719.
- Doha Al-Feadh and Wathiq Al-Ramdhan, (2019). The First International Scientific Conference on Pure Science 123,23-24.
- Echer E, Gonzalez WD, Tsurutani BT (2008). “Interplanetary conditions leading to super intense geomagnetic storms (Dst ≤ −250 nT) during solar cycle 23”. Geophys Res Lett 35:03–06. GL031755
- Farrugia, C. J., L. F. Burlaga, and R. P. Lepping, AGU, Washington, D. C., (1997).Magnetic clouds and the quiet-storm effect at Earth, in Magnetic Storms, Geophys. Monogr. Ser., vol. 98, edited by B. T. Tsurutani et al., pp. 91-106.
- Frank, L. A. (1967). On the extraterrestrial ring current during geomagnetic storms. Journal of Geophysical Research, 72 (15), 3753–3767.
- Gonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T.Tsurutani, and V. Vasyliunas (1994). “What is a geomagnetic storm?”. J. Geophys. Res.,99, 5771,
- Gonzalez, W.D., Tsurutani, B.T.: (1987). “Criteria of interplanetary parameters causing intense magnetic storms (Dst < −100 nT)”. Planet. Space Sci. 35(9), 1101.
- Gonzalez, W. D., Tsurutani, B. T., & De Gonzalez, A. L. C. (1999). “Interplanetary origin of geomagnetic storms”. Space Science Reviews, 88 (3-4), 529–562.
- Guo, J., Feng, X., Forbes, J. M., Lei, J., Zhang, J., & Tan, C. (2010). On the relationship between thermosphere density and solar wind parameters during intense geomagnetic storms. Journal of Geophysical Research: Space Physics, 115(A12).
- Jordanova, V. K. (2020). Ring current decay. In Ring current investigations (pp. 181–223). Elsevier.
- Kamide, Y., McPherron, R., Gonzalez, W., Hamilton, D., Hudson, H., Joselyn, J, Szuszczewicz, E. (1997). Magnetic storms: Current understanding and outstanding questions. Magnetic storms, 1–19.
- Kamide, Y., Baumjohann, W., Daglis, I., Gonzalez, W., Grande, M., Joselyn, J, others Current understanding of magnetic storms: Storm-substorm relationships. Journal of Geophysical Research: Space Physics, 103 (A8), 17705–17728. (1998).
- Kane, R. P. (2005). How good is the relationship of solar and interplanetary plasma parameters with geomagnetic storms? Journal of Geophysical Research: Space Physics, 110(A2).
- Kozyra, J. U., & Liemohn, M. W. (2003). Ring current energy input and decay. Magnetospheric Imaging— the Image Prime Mission, 105,
- Krieger, A., Timothy, A., (1973). Roel of, E. A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Physics, 29 (2), 505–525.
- Manoharan, P. K., Gopalaswamy, N., Yashiro, S., Lara, A, Michalek, G., Howard, R. (2004). “Influence of coronal mass ejection interaction on propagation of interplanetary shocks” Geophys, Res 109, A06109.
- Poudel, P., Simkhada, S., Adhikari, B., Sharma, D., & Nakarmi, J. J. (2019). Variation of solar wind parameters along with the understanding of energy dynamics within the magnetospheric system during geomagnetic disturbances. Earth and Space Science, 6, 276–293.
- Raghav, A. N., Choraghe, K., & Shaikh, Z. I. (2019). The cause of an extended recovery from an icmeinduced extreme geomagnetic storm: a case study. Monthly Notices of the Royal Astronomical Society, 488 (1), 910–917.
- Richardson, I., Webb, D., Zhang, J., Berdichevsky, D., Biesecker, D., Kasper, J., others(2006). “Major geomagnetic storms (Dst = – 100 nt) generated by corotating interaction regions. Journal of Geophysical Research: Space Physics, 111 (A7).
- Richardson, I. G., & Cane, H. V. (2012). “Solar wind drivers of geomagnetic storms during more than four solar cycles. Journal of Space Weather and Space Climate, 2, A01.
- Sheeley, N., Harvey, J., & Feldman, W. (1976). “Coronal holes, solar wind streams, and recurrent geomagnetic disturbances: 1973–1976. Solar Physics, 49 (2), 271–278.
- Silwal, A., Gautam, S. P., Poudel, P., Karki, M., Adhikari, B., Chapagain, N. P., & Migoya Orue, Y. (2021). “Global positioning system observations of ionospheric total electron content variations during the 15 January 2010 and 21 June 2020 solar eclipse. Radio Science, 56(5), 1-20.
- Smith, P., & Hoffman, R. A. (1973). “Ring current particle distributions during the magnetic storms of December 16–18, 1971. Journal of Geophysical Research, 78 (22), 4731–4737.
- Svalgaard L (1977). “Geomagnetic activity: dependence on solar wind parameters. In: Zirker JB (ed) Coronal holes and high-speed wind streams. Colorado Association University Press, Boulder, pp 371–441.
- Tsurutani, B. T., W. D. Gonzalez, A. L. C. Gonzalez, F. Tang, J. K. Arballo, and M. Okada, (1995). Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle, J. Geophys. Res., 100, 21,717.
- Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L., Guarnieri, F. L., Gopalswamy, N., Grande, M., others(2006). “Corotating solar wind streams and recurrent geomagnetic activity: A review”. Journal of Geophysical Research: Space Physics, 111 (A7).
- Verma P.L., (2016). Statistical Relations of Geomagnetic Activity Parameters with Solar Activity Parameters IJIRG 2, (5),104.