Abstract :
East Kalimantan bituminous coal has a carbon composition of 70.24%, indicating a crystal structure of graphite layers. This makes it a viable material for creating reduced graphene oxide (r-GO), which has multiple advantages in various properties and can be employed in numerous technological applications. RGO is obtained by nearly eliminating oxygen functional groups in graphene oxide (GO) through sonication for 3 hours at pH 4. The yield with the lowest value at a 10% concentration of ascorbic acid and 50 minutes of magnetic stirring was selected as optimal. To characterize the resulting product, FTIR was utilized and revealed that O-H (84.21%), C=C (63.04%), and C-O-C (61%) had the highest %T. Technical abbreviations were explained upon first use. Energy-dispersive X-ray (EDX) analysis demonstrated a 90.6% increase in carbon content from 40.159% in GO to 76.554% in r-GO. In parallel, oxygen content decreased from 40,973% in GO to 17.551% in rGO, marking a 57.16% decrease. The morphology of the resulting rGO closely resembled the reference. Additionally, rGO exhibited a C:O ratio of 4.378, surpassing the C:O ratio of GO, which was 1.02. RGO density and pH value were 1.45 g/cm3 and 2, respectively.
Keywords :
Ascorbic Acid; Bituminous Coal; Graphene Oxide; Magnetic Stirrer; Reduced Graphene Oxide.References :
- Andrijanto, E., Shoelarta, S., Subiyanto, G., & Rifki, S. (2016). Facile Synthesis of Graphene from Graphite Using Ascorbic Acid as Reducing Agent. 020003.
- ASTM International. (2010). Test Method for Density of Semi-Solid Bituminous Materials (Pycnometer Method). ASTM International.
- Bakatula, E. N., Richard, D., Neculita, C. M., & Zagury, G. J. (2018). Determination of Point of Zero Charge of Natural Organic Materials. Environmental Science and Pollution Research, 25(8), 7823–7833.
- Bychko, I., Abakumov, A., Didenko, O., Chen, M., Tang, J., & Strizhak, P. (2022). Differences in the Structure and Functionalities of Graphene Oxide and Reduced Graphene Oxide Obtained from Graphite with Various Degrees of Graphitization. Journal of Physics and Chemistry of Solids, 164, 110614.
- Chua, C. K., & Pumera, M. (2016). The Reduction of Graphene Oxide with Hydrazine: Elucidating Its Reductive Capability Based on A Reaction-Model Approach. Chemical Communications, 52(1), 72–75.
- Dai, L., Chang, D. W., Baek, J.-B., & Lu, W. (2012). Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small, 8(8), 1130–1166.
- Delmifiana, B. (2013). Pengaruh Sonikasi terhadap Struktur dan Morfologi Nanopartikel Magnetik yang Disintesis dengan Metode Kopresipitasi. 2(3).
- Emiru, T. F., & Ayele, D. W. (2017). Controlled Synthesis, Characterization and Reduction of Graphene Oxide: A Convenient Method for Large Scale Production. Egyptian Journal of Basic and Applied Sciences, 4(1), 74–79.
- Fernández-Merino, M. J., Guardia, L., Paredes, J. I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A., & Tascón, J. M. D. (2010). Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. The Journal of Physical Chemistry C, 114(14), 6426–6432.
- Gao, J., Liu, F., Liu, Y., Ma, N., Wang, Z., & Zhang, X. (2010). Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chemistry of Materials, 22(7), 2213–2218.
- Go, S.-H., Kim, H., Yu, J., You, N.-H., Ku, B.-C., & Kim, Y.-K. (2018). Synergistic Effect of UV and L-Ascorbic Acid on the Reduction of Graphene Oxide: Reduction Kinetics and Quantum Chemical Simulations. Solid State Sciences, 84, 120–125.
- Hsieh, C.-T., Lin, C.-Y., Chen, Y.-F., Lin, J.-S., & Teng, H. (2013). Silver Nanorods Attached to Graphene Sheets as Anode Materials for Lithium-Ion Batteries. Carbon, 62, 109–116.
- Huda, M., Salinita, S., & Ningrum, N. S. (2017). Perubahan Komposisi Maseral dalam Batubara Wahau Setelah Proses Pengeringan/Upgrading. Jurnal Teknologi Mineral Dan Batubara, 13(3), 225.
- Jakhar, R., Yap, J. E., & Joshi, R. (2020). Microwave Reduction of Graphene Oxide. Carbon, 170, 277–293.
- Konios, D., Stylianakis, M. M., Stratakis, E., & Kymakis, E. (2014). Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide. Journal of Colloid and Interface Science, 430, 108–112.
- Longo, A., Verucchi, R., Aversa, L., Tatti, R., Ambrosio, A., Orabona, E., Coscia, U., Carotenuto, G., & Maddalena, P. (2017). Graphene Oxide Prepared by Graphene Nanoplatelets and Reduced by Laser Treatment. Nanotechnology, 28(22), 224002.
- Mutrofin, S., Wardhani, S., & Misbah Khunur, M. (2021). Preparasi Nanopartikel Batubara Loa Janan Kalimantan Timur Hasil Pencucian dengan Teknik Sonikasi [DPP/SPP]. Universitas Brawijaya.
- Nadia, L. M. H., Suptijah, P.-, & Ibrahim, B.-. (2014). Production and Characterization Chitosan Nano from Black Tiger Shrimpwith Ionic Gelation Methods. Jurnal Pengolahan Hasil Perikanan Indonesia, 17(2).
- Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science and Technology, 4(1), 97.
- Palomba, M., Carotenuto, G., & Longo, A. (2022). A Brief Review: The Use of L-Ascorbic Acid as a Green Reducing Agent of Graphene Oxide. Materials, 15(18), 6456.
- Pei, S., & Cheng, H.-M. (2012). The Reduction of Graphene Oxide. Carbon, 50(9), 3210–3228.
- Pratomo, Moh. D., Wardanidan, D. W., Revonagara, N. A., Ersyah, D., Setijawati, D., Yufidasari, H. S., & Jaziri, A. A. (2020). Karakteristik Pepton dari Limbah Ikan Kurisi (Nemipterus sp.) sebagai Media Pertumbuhan Bakteri yang Terjamin Halal. Journal of Aquaculture and Fish Health, 9(2), 104.
- Rowley-Neale, S. J., Randviir, E. P., Abo Dena, A. S., & Banks, C. E. (2018). An Overview of Recent Applications of Reduced Graphene Oxide as A Basis of Electroanalytical Sensing Platforms. Applied Materials Today, 10, 218–226.
- Santoso, A. D. (2018). Keragaan Nilai DO, BOD dan COD di Danau Bekas Tambang Batubara Studi Kasus pada Danau Sangatta North PT. KPC di Kalimatan Timur. Jurnal Teknologi Lingkungan, 19(1), 89.
- Taurina, W., Sari, R., Hafinur, U. C., Wahdaningsih, S., & Isnindar, I. (2017). Optimization of Stirring Speed Time Toward Nanoparticle Size of Chitosan-Siam Citrus Peel (Citrus nobilis L.var Microcarpa) 70% Ethanol Extract. Majalah Obat Tradisional, 22(1), 16.
- Torrisi, L., Cutroneo, M., Torrisi, A., & Silipigni, L. (2022). Measurements on Five Characterizing Properties of Graphene Oxide and Reduced Graphene Oxide Foils. Physica Status Solidi (a), 219(6), 2100628.
- Utkan, G., Öztürk, T., Duygulu, Ö., Tahtasakal, E., & Denizci, A. A. (2019). Microbial Reduction of Graphene Oxide by Lactobacillus Plantarum.
- Wijayanto, S. O., & Bayuseno, A. P. (2014). Analisis Kegagalan Material Pipa Ferrule Nickel Alloy N06025 pada Waste Water Heat Boiler Akibat Suhu Tinggi Berdasarkan Pengujian: Mikrografi dan Kekerasan. 2(1).
- Yan, Y., Nashath, F. Z., Chen, S., Manickam, S., Lim, S. S., Zhao, H., Lester, E., Wu, T., & Pang, C. H. (2020). Synthesis of Graphene: Potential Carbon Precursors and Approaches. Nanotechnology Reviews, 9(1), 1284–1314.
- Yustanti, E. (2012). Pencampuran Batubara Coking dengan Batubara Lignite Hasil Karbonisasi sebagai Bahan Pembuatan Kokas. 15.
- Zhu, Q. (2014). Coal Sampling and Analysis Standards. IEA Clean Coal Centre.