Abstract :
Type-2 diabetes mellitus occurs due to suboptimal insulin function (insulin resistance) or decreased insulin function. Type-2 diabetes mellitus treatment is chronic and lifelong. One of the treatments is the use of insulin and oral anti-diabetic drugs. This treatment requires a long period of time and can cause unwanted side effects. Therefore, alternative treatments are needed with minimal side effects by utilizing herbal plants containing Aloin B compounds because they have been proven to be used as antidiabetic agents. These compounds can be found from the Aloe Vera plant (Aloe Vera l.). The aim of this study was to find compounds derived from Aloin B compounds that have the most potential as anti-diabetic type-2 by inhibiting the pancreatic α-amylase enzyme (code: 1B2Y) in breaking down starch in the body. The certainty of the presence of the compound Aloin B in the flesh of the aloe plant was confirmed by the LC-MS test. This research was conducted using the Quantitative Structure-Activity Relationship (QSAR) and Molecular Bonding method. The results showed that the ID S22 compound with the IUPAC name (S)-10-amino-1,2,8-trihydroxy-6- (hydroxymethyl) -10- ((2R,3R,4S,5S,6R) -2,3, 4,5-tetrahydroxy–6(hydroxymethyl) tetrahydro-2H-piran-2-yl) anthracene-9(10H)-one is the most potent compound from Aloin B derivatives as a type-2 antidiabetic agent in the mechanism of inhibiting α-enzyme action pancreatic amylase, based on the value of R2 = 0.980, the PRESS value of the compound was 0.0004, the binding energy value was -7.07 kcal/mol, the inhibition constant was 6.58 uM and the formation of hydrogen bonds between the compound and the amino acid residues aspirin, glycine, threonine and arginine.
Keywords :
Aloin B Derivatives, Antidiabetic, molecular docking, pancreatic α-amylase enzyme, QSARReferences :
- Abchir, O., Daoui, O., Belaidi, S., Ouassaf, M., Qais, F. A., ElKhattabi, S., Belaaouad, S., & Chtita, S. (2022). Design of novel benzimidazole derivatives as potential α-amylase inhibitors using QSAR, pharmacokinetics, molecular docking, and molecular dynamics simulation studies. Journal of Molecular Modeling, 28(4), 106. https://doi.org/10.1007/s00894-022-05097-9
- Alam, F., Shafique, Z., Amjad, S. T., & Bin Asad, M. H. H. (2019). Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytotherapy Research, 33(1), 41–54. https://doi.org/10.1002/ptr.6211
- Alejo, A. O., Ajayi, A. M., & Akinyele, B. O. (2019). Comparative Efficacy of Aloe vera (Linn) and Aloe schweinfurthii (Baker) Powdered Leaf Extracts in the Control of Some Plant Fungal Pathogens. International Journal of Biochemistry Research & Review, 25(2), 1–9.
- Amini, H. W., Rahmawati, I., Darmayanti, R. F., & Susanti, A. (2020). A QSAR study on alkyl nitroderivatives of hydroxytyrosol as antioxidant. AIP Conference Proceedings, 2278(1), 020019.
- Ananda, H., & Zuhrotun, A. (2017). Aktivitas Tanaman Lidah Buaya (Aloe Vera Linn) Sebagai Penyembuh Luka. Farmaka, 15(2), 82–89.
- Anugrahini, C. P. H., & Wahyuni, A. S. (2021). Narrative Review: Aktivitas Antidiabetes Tanaman Tradisional Di Pulau Jawa. Pharmacon: Jurnal Farmasi Indonesia, 120–131.
- Atanu, F. O., Avwioroko, O. J., & Momoh, S. (2018). Anti-diabetic effect of combined treatment with Aloe vera gel and Metformin on alloxan-induced diabetic rats. Journal of Ayurvedic and Herbal Medicine, 4(1), 1–5.
- Bendjedid, S., & Benouchenne, D. (2023). In silico studies for assessing physicochemical, pharmacokinetic and cytotoxicity properties of bioactive molecules identified by LC-MS in Aloe vera leaves extracts. South African Journal of Botany, 157, 75–81. https://doi.org/10.1016/j.sajb.2023.03.052
- Berbudi, A., Rahmadika, N., Tjahjadi, A. I., & Ruslami, R. (2020). Type 2 Diabetes and its Impact on the Immune System. Current Diabetes Reviews, 16(5), 442–449. https://doi.org/10.2174/1573399815666191024085838
- Boudreau, M. D., Olson, G. R., Tryndyak, V. P., Bryant, M. S., Felton, R. P., & Beland, F. A. (2017). From the Cover: Aloin, a Component of the Aloe Vera Plant Leaf, Induces Pathological Changes and Modulates the Composition of Microbiota in the Large Intestines of F344/N Male Rats. Toxicological Sciences, 158(2), 302–318. https://doi.org/10.1093/toxsci/kfx105
- Etxeberria, U., de la Garza, A. L., Campión, J., Martínez, J. A., & Milagro, F. I. (2012). Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opinion on Therapeutic Targets, 16(3), 269–297. https://doi.org/10.1517/14728222.2012.664134
- Hana, F. M. (2020). Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma Decision Tree C4.5. Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan Buatan), 4(1), 32–39. https://doi.org/10.47970/siskom-kb.v4i1.173
- Hawash, M., Jaradat, N., Shekfeh, S., Abualhasan, M., Eid, A. M., & Issa, L. (2021). Molecular docking, chemo-informatic properties, alpha-amylase, and lipase inhibition studies of benzodioxol derivatives. BMC Chemistry, 15(1), 40. https://doi.org/10.1186/s13065-021-00766-x
- Hayes, A. W., Clemens, R. A., & Pressman, P. (2022). The absence of genotoxicity of a mixture of aloin A and B and a commercial aloe gel beverage. Toxicology Mechanisms and Methods, 32(5), 385–394.
- Ibrahim, S. R. M., Mohamed, G. A., Khayat, M. T., Ahmed, S., Abo-Haded, H., & Alshali, K. Z. (2019). Mangostanaxanthone VIIII, a new xanthone from Garcinia mangostana pericarps, α-amylase inhibitory activity, and molecular docking studies. Revista Brasileira de Farmacognosia, 29(2), 206–212. https://doi.org/10.1016/j.bjp.2019.02.005
- Izadpanah, E., Riahi, S., Abbasi-Radmoghaddam, Z., Gharaghani, S., & Mohammadi-Khanaposhtanai, M. (2021). A simple and robust model to predict the inhibitory activity of α-glucosidase inhibitors through combined QSAR modeling and molecular docking techniques. Molecular Diversity, 25(3), 1811–1825. https://doi.org/10.1007/s11030-020-10164-5
- Kaparakou, E. H., Kanakis, C. D., Gerogianni, M., Maniati, M., Vekrellis, K., Skotti, E., & Tarantilis, P. A. (2021). Quantitative determination of aloin, antioxidant activity, and toxicity of Aloe vera leaf gel products from Greece. Journal of the Science of Food and Agriculture, 101(2), 414–423.
- Khadse, S. C., Amnerkar, N. D., Dave, M. U., Lokwani, D. K., Patil, R. R., Ugale, V. G., Charbe, N. B., & Chatpalliwar, V. A. (2019). Quinazolin-4-one derivatives lacking toxicity-producing attributes as glucokinase activators: Design, synthesis, molecular docking, and in-silico ADMET prediction. Future Journal of Pharmaceutical Sciences, 5(1), 11. https://doi.org/10.1186/s43094-019-0012-y
- Khajeeyan, R., Salehi, A., Dehnavi, M. M., Farajee, H., & Kohanmoo, M. A. (2022). Growth parameters, water productivity and aloin content of Aloe vera affected by mycorrhiza and PGPR application under different irrigation regimes. South African Journal of Botany, 147, 1188–1198.
- La Kilo, J., La Kilo, A., & Hamdiani, S. (2021). QSAR and Ab Initio studies of quinolon-4 (1H)-imine derivatives as antimalarial agents. Acta Chimica Asiana, 4(1), 192–196.
- Naveen, J., & Baskaran, V. (2018). Antidiabetic plant-derived nutraceuticals: A critical review. European Journal of Nutrition, 57(4), 1275–1299. https://doi.org/10.1007/s00394-017-1552-6
- Organization, W. H. (2019). Classification of diabetes mellitus.
- Pisani, L., de Candia, M., Rullo, M., & Altomare, C. D. (2022). Hansch-Type QSAR Models for the Rational Design of MAO Inhibitors: Basic Principles and Methodology. In Monoamine Oxidase: Methods and Protocols (pp. 207–220). Springer.
- Saleh Al-Sowayan, N., & Mohammad AL-Sallali, R. (2023). The effect of aloin in blood glucose and antioxidants in male albino rats with Streptozoticin-induced diabetic. Journal of King Saud University – Science, 35(4), 102589. https://doi.org/10.1016/j.jksus.2023.102589
- Sarker, A., & Grift, T. E. (2021). Bioactive properties and potential applications of Aloe vera gel edible coating on fresh and minimally processed fruits and vegetables: A review. Journal of Food Measurement and Characterization, 15(2), 2119–2134. https://doi.org/10.1007/s11694-020-00802-9
- Tekulu, G. H., Araya, E. M., & Mengesha, H. G. (2019). In vitro α-amylase inhibitory effect of TLC isolates of Aloe megalacantha baker and Aloe monticola Reynolds. BMC Complementary and Alternative Medicine, 19(1), 206. https://doi.org/10.1186/s12906-019-2622-5
- Ukwenya, V. O., Adelakun, S. A., & Elekofehinti, O. O. (2021). Exploring the antidiabetic potential of compounds isolated from Anacardium occidentale using computational aproach: Ligand-based virtual screening. In Silico Pharmacology, 9(1), 25. https://doi.org/10.1007/s40203-021-00084-z
- Wiratama, M. A., & Pradnya, W. M. (2022). Optimasi Algoritma Data Mining Menggunakan Backward Elimination untuk Klasifikasi Penyakit Diabetes. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 11(1), 1. https://doi.org/10.23887/janapati.v11i1.45282
- Zhong, R., Chen, L., Liu, Y., Xie, S., Li, S., Liu, B., & Zhao, C. (2022). Anti-diabetic effect of aloin via JNK-IRS1/PI3K pathways and regulation of gut microbiota. Food Science and Human Wellness, 11(1), 189–198. https://doi.org/10.1016/j.fshw.2021.07.019
- Zhu, M., Su, H., Bao, Y., Li, J., & Su, G. (2022). Experimental determination of octanol-water partition coefficient (KOW) of 39 liquid crystal monomers (LCMs) by use of the shake-flask method. Chemosphere, 287, 132407.