Abstract :
Breast cancer is one of the biggest contributors to death in the world. Several treatment methods such as chemotherapy, hormonal therapy, radiation therapy, and surgery have shown side effects and resistance to breast cancer. Bioactive compounds are now an alternative in the development of drugs for breast cancer. Pearl grass is one of the plants reported to contain bioactive compounds that have inhibitory activity against breast cancer cells, namely ursolic acid. Most reports describe modifications of groups on its structure increasing the potential of ursolic acid as a breast cancer drug. This study aims to develop breast cancer drugs with raw materials of ursolic acid derivative compounds that are modified on the active side with groups that play an important role as anticancer using the Quantitative Structure and Activity Relationship (QSAR) method and molecular docking. The QSAR descriptors used are hydrophobic, steric, and electronic. The characters of each descriptor were computed using the SwissADME, Molinspiration, and NWChem programs with the DFT method, B3LYP function, and 6-31G* basis set. Molecular docking was performed using the AutoDock Tools 1.5.6 program and visualized using the Biovia Studio Visualizer program. The results showed that the regression coefficient (R2) of the QSAR model had a high correlation of 0.985 with the compound (1S,2R,4aS,6aR,6bR,10S,12aR,12bR,14bS)-10-amino-1,2,6a,6b,9,9, 12a-heptamethyl-14-oxoicosahydropicene-4a(2H)-carboxylic acid became the best compound validated by the results of molecular docking which has a binding energy of -7.92 kcal/mol and an inhibition constant of 1.42 nM so that it can inhibit MCF-7 cells in breast cancer.
Keywords :
breast cancer, molecular docking, pearl grass, QSAR, ursolic acid.References :
- Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.
- Waks, A. G., & Winer, E. P. (2019). Breast Cancer Treatment. JAMA, 321(3), 316.
- Łukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanisławek, A. (2021). Breast Cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers, 13(17), 4287.
- Jha, V., Devkar, S., Gharat, K., Kasbe, S., Matharoo, D. K., Pendse, S., Bhosale, A., & Bhargava, A. (2022). Screening of Phytochemicals as Potential Inhibitors of Breast Cancer using Structure Based Multitargeted Molecular Docking Analysis. Phytomedicine Plus, 2(2), 100227.
- Julca, I., Mutwil‐Anderwald, D., Manoj, V., Khan, Z., Lai, S. K., Yang, L. K., Beh, I. T., Dziekan, J., Lim, Y. P., Lim, S. K., Low, Y. W., Lam, Y. I., Tjia, S., Mu, Y., Tan, Q. W., Nuc, P., Choo, L. M., Khew, G., Shining, L., … Mutwil, M. (2023). Genomic, transcriptomic, and metabolomic analysis of Oldenlandia corymbosa reveals the biosynthesis and mode of action of anti‐cancer metabolites. Journal of Integrative Plant Biology, jipb.13469.
- Artanti, N., Hanafi, M., Andriyani, R., Saraswaty, V., Zalinar Udin, L., D Lotulung, P., Ichi Fujita, K., & Usuki, Y. (2015). Isolation of an Anti-Cancer Asperuloside from Hedyotis corymbosa L. Journal of Tropical Life Science, 5(2), 88–91.
- Ma Chung, & Rollando, R. (2018). Hedyotis corymbosa L. and Sterculia quadrifida R.Br Ethanolic Extract Enhances Cisplatin’s Cytotoxicity on T47D Breast Cancer Cells Through Cell Cycle Modulation. The Journal of Pure and Applied Chemistry Research, 7(2), 159–171.
- Khwaza, V., Oyedeji, O. O., & Aderibigbe, B. A. (2020). Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: An Update. International Journal of Molecular Sciences, 21(16), 5920.
- Mlala, S., Oyedeji, A. O., Gondwe, M., & Oyedeji, O. O. (2019). Ursolic Acid and Its Derivatives as Bioactive Agents. Molecules, 24(15), 2751.
- Liew, Malagobadan, Arshad, & Nagoor. (2020). A Review of the Structure–Activity Relationship of Natural and Synthetic Antimetastatic Compounds. Biomolecules, 10(1), 138.
- Besli, N., Yenmis, G., Tunçdemir, M., Yaprak Sarac, E., Doğan, S., Solakoğlu, S., & Kanigur Sultuybek, G. (2020). Metformin suppresses the proliferation and invasion through NF-kB and MMPs in MCF-7 cell line. Turkish Journal of Biochemistry, 45(3), 295–304.
- Shaker, B., Ahmad, S., Lee, J., Jung, C., & Na, D. (2021). In silico methods and tools for drug discovery. Computers in Biology and Medicine, 137, 104851.
- Yadav, D., Nath Mishra, B., & Khan, F. (2019). 3D-QSAR and docking studies on ursolic acid derivatives for anticancer activity based on bladder cell line T24 targeting NF-kB pathway inhibition. Journal of Biomolecular Structure and Dynamics, 37(14), 3822–3837.
- Fadila, F. N., & Sanjaya, I. G. M. (2021). Study In Silico Senyawa Asam Asiatik dan Turunannya Sebagai Anti Katarak. Al-Kimia, 9(1), 70-80.
- Borková, L., Frydrych, I., Jakubcová, N., Adámek, R., Lišková, B., Gurská, S., Medvedíková, M., Hajdúch, M., & Urban, M. (2020). Synthesis and biological evaluation of triterpenoid thiazoles derived from betulonic acid, dihydrobetulonic acid, and ursonic acid. European Journal of Medicinal Chemistry, 185, 111806.
- Meng, Y.-Q., Zhang, L.-F., Liu, D.-Y., Liu, L.-W., Zhang, Y., & Zhao, M.-J. (2016). Synthesis and antitumor activity evaluation of novel ursolic acid derivatives. Journal of Asian Natural Products Research, 18(3), 280–288.
- Fontana, G., Bruno, M., Notarbartolo, M., Labbozzetta, M., Poma, P., Spinella, A., & Rosselli, S. (2019). Cytotoxicity of oleanolic and ursolic acid derivatives toward hepatocellular carcinoma and evaluation of NF-κB involvement. Bioorganic Chemistry, 90, 103054.
- Paszel-Jaworska, A., Romaniuk, A., & Rybczynska, M. (2014). Molecular Mechanisms of Biological Activity of Oleanolic Acid—A Source of Inspiration for A New Drugs Design. Mini-Reviews in Organic Chemistry, 11(3), 330–342.
- Da Silva, E. F., de Vargas, A. S., Willig, J. B., de Oliveira, C. B., Zimmer, A. R., Pilger, D. A., Buffon, A., & Gnoatto, S. C. B. (2021). Synthesis and antileukemic activity of an ursolic acid derivative: A potential co-drug in combination with imatinib. Chemico-Biological Interactions, 344, 109535.
- Fu, L., Lin, Q.-X., Liby, K. T., Sporn, M. B., & Gribble, G. W. (2014). An efficient synthesis of methyl 2-cyano-3,12-dioxoursol-1,9-dien-28-oate (CDDU-methyl ester): Analogues, biological activities, and comparison with oleanolic acid derivatives. Biomol. Chem., 12(28), 5192–5200.
- Aprianto, Y., Putri, A. M., Fadliyah, H., Murwanti, R., & Meiyanto, E. (2018). Antigenotoxic Activity of Rumput Mutiara (Hedyotis corymbosa L.) Ethanolic Extract on Cyclophosphamide-Induced Mice. Indonesian Journal of Cancer Chemoprevention, 8(3), 135.
- Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Advanced Drug Delivery Reviews, 46(1–3), 3–26.
- Kesuma, D., Siswandono, S., Purwanto, B. T., & Hardjono, S. (2018). Uji in silico Aktivitas Sitotoksik dan Toksisitas Senyawa Turunan N-(Benzoil)-N’- feniltiourea Sebagai Calon Obat Antikanker. JPSCR : Journal of Pharmaceutical Science and Clinical Research, 3(1), 1.
- Hassan, M., Abbas, Q., Ashraf, Z., Moustafa, A. A., & Seo, S.-Y. (2017). Pharmacoinformatics exploration of polyphenol oxidases leading to novel inhibitors by virtual screening and molecular dynamic simulation study. Computational Biology and Chemistry, 68, 131–142.
- Saeed, A., Rehman, S., Channar, P. A., Larik, F. A., Abbas, Q., Hassan, M., Raza, H., Flörke, U., & Seo, S.-Y. (2017). Long chain 1-acyl-3-arylthioureas as jack bean urease inhibitors, synthesis, kinetic mechanism and molecular docking studies. Journal of the Taiwan Institute of Chemical Engineers, 77, 54–63.
- Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072.
- Gao, Y., Gesenberg, C., & Zheng, W. (2017). Oral Formulations for Preclinical Studies. In Developing Solid Oral Dosage Forms (pp. 455–495). Elsevier.
- Chandrasekaran, B., Abed, S. N., Al-Attraqchi, O., Kuche, K., & Tekade, R. K. (2018). Computer-Aided Prediction of Pharmacokinetic (ADMET) Properties. In Dosage Form Design Parameters (pp. 731–755).
- Roy, K., Kar, S., & Das, R. N. (2015). A Primer on QSAR/QSPR Modeling: Fundamental Concepts (1st ed. 2015). Springer International Publishing : Imprint: Springer.
- Bergström, C. A. S., Charman, W. N., & Porter, C. J. H. (2016). Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Advanced Drug Delivery Reviews, 101, 6–21.
- Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25.
- Saputra, A., Andi Syahputra, R., & Tahir, I. (2013). Aplikasi Regresi Komponen Utama Untuk Analisis Hubungan Kuantitatif Struktur-Aktivitas Antikanker Senyawa Turunan Naftoquinon. Molekul, 8(2), 111.
- Noor, M., Kasmui, K., & Kusuma, S. B. W. (2016). Analisis Hubungan Kuantitatif Struktur dan Aktivitas Antimalaria Senyawa Turunan Quinoxalin. Indonesian Journal Of Mathematics and Natural Sciences, 39(1).
- Rakhman, K. A., Limatahu, N. A., Karim, H. B., & Abdjan, M. I. (2019). Kajian Senyawa Turunan Benzopirazin sebagai Antimalaria Menggunakan Metode QSAR dan MLR. EduChemia (Jurnal Kimia Dan Pendidikan), 4(2), 112.
- Raval, K., & Ganatra, T. (2022). Basics, types and applications of molecular docking: A review. IP International Journal of Comprehensive and Advanced Pharmacology, 7(1), 12–16.
- Sari, D. A., Harijono, H., & Chang, C.-I. (2019). Evaluation of antibacterial activities from major bioactive constituents of the whole plant of Hedyotis corymbosa. Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering, 2(2), 39–42.
- Min, Y., Wei, Y., Wang, P., Wu, N., Bauer, S., Zheng, S., Shi, Y., Wang, Y., Wang, X., Zhao, D., Wu, J., & Zheng, J. (2022). Predicting the Protein-Ligand Affinity From Molecular Dynamics Trajectories. Springer Nature.
- Rastini, M. B. O., Giantari, N. K. M., Adnyani, K. D., & Laksmiani, N. P. L. (2019). Molecular Docking Aktivitas Antikanker Dari Kuersetin Terhadap Kanker Payudara Secara In Silico. Jurnal Kimia, 180.
- McWhirter, C. (2021). Kinetic mechanisms of covalent inhibition. In Annual Reports in Medicinal Chemistry (Vol. 56, pp. 1–31). Elsevier.
- Zheng, X., & Polli, J. (2010). Identification of inhibitor concentrations to efficiently screen and measure inhibition Ki values against solute carrier transporters. European Journal of Pharmaceutical Sciences, 41(1), 43–52.
- Fakih, T. M., Jannati, F. A., Meilani, A., Ramadhan, D. S. F., & Darusman, F. (2022). Studi In Silico Aktivitas Analog Senyawa Zizyphine dari Bidara Arab (Zizyphus spina-christi) sebagai Antivirus SARS-CoV-2 terhadap Reseptor 3CLpro. ALCHEMY Jurnal Penelitian Kimia, 18(1), 70.
- Utami, D., Syahputra, R., & Widyaningsih, W. (2022). Studi Docking Molekular Aktivitas Panghambatan Enzim Tirosinase Ubi Jalar (Ipomoea batatas L. Lam). Pharmacon: Jurnal Farmasi Indonesia, 19(1), 21–34.