Abstract :
Heavy metal contamination in the natural environment can occur as long-term site pollution or as surges of pollutants from wastewater discharge. It is well recognized that heavy metal discharge from the metal processing industries has a negative impact on the environment. Conventional methods of heavy metal removal from aqueous solutions are not cost-effective and produce large amounts of harmful chemical sludge. A novel and alternative approach to removing heavy metals from aqueous solutions involve the biosorption of these contaminants by non-living, metabolically inert biomass that is either derived from microorganisms or plants. One of the key elements of environmental and bioresource technologies today is biosorption. Due to their high surface-to-volume ratio, wide availability, quick kinetics of adsorption and desorption, and low cost, microorganisms—more specifically, bacteria, algae, yeasts, and fungi—have attracted increasing attention as biosorbents for the removal of heavy metals. Analyzing the removal of heavy metals from aqueous solutions utilizing diverse biological components, such as fungi, algae, yeast, and bacterial biomass, is the goal of the current study. This article discusses the advantages of heavy metal removal from waste streams, gives a brief overview of the technology’s potential for biosorption and bioaccumulation, and emphasizes the undelaying features of biosorption as well as operational factors like pH, the dose required to be given, the initial concentration, temperature, the efficiency of the treatment, and its economic significance.
Keywords :
Biosorbents, Contamination, Desorption, Sludge.References :
- Devda, V., Chaudhary, K., Varjani, S., Pathak, B., Patel, A. K., Singhania, R. R., … Chaturvedi, P. (2021). Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered, 12(1), 4697–4718.doi:10.1080/21655979.2021.1946631
- Chatterjee, A., & Abraham, J. (2019). Desorption of heavy metals from metal loaded sorbents and e-wastes: A review. Biotechnology Letters, 41(3), 319-333. https://doi.org/10.1007/s10529-019-02650-0
- Masindi, V., & Muedi, K. L. (2018). Environmental Contamination by Heavy Metals, Heavy Metals, Hosam El-Din M. Saleh and Refaat F. Aglan, IntechOpen.
- Shamim, S. (2018). Biosorption of Heavy Metals. Biosorption. https://doi.org/10.5772/intechopen.72099
- Morosanu, I., Teodosiu, C., Paduraru, C., Ibanescu, D., & Tofan, L. (2017). Biosorption of lead ions from aqueous effluents by rapeseed biomass. New Biotechnology, 39, 110–124. doi:10.1016/j.nbt.2016.08.002
- Meulepas, R. J., Gonzalez-Gil, G., Teshager, F. M., Witharana, A., Saikaly, P. E., & Lens, P. N. (2015). Anaerobic bioleaching of metals from waste activated sludge. Science of the Total Environment, 514, 60-67. https://doi.org/10.1016/j.scitotenv.2014
- Abbas, S. H., Ismail, I. M., Mostafa, T. M., & Sulaymon, A. H. (2014). Biosorption of heavy metals: a review. J Chem Sci Technol, 3(4), 74-102.
- Mishra, A., & Malik, A. (2013). Recent Advances in Microbial Metal Bioaccumulation. Critical Reviews in Environmental Science and Technology, 43(11), 1162-1222. https://doi.org/10.1080/10934529.2011.627044
- Babák, L., Šupinova, P., Zichova, M., Burdychova, R., & Vitova, E. (2012). Biosorption of Cu, Zn and Pb by thermophilic bacteria-Effect of biomass concentration on biosorption capacity. Acta Univ. Agric. Silvic. Mendelianae Brun, 60(5), 9-18. https://acta.mendelu.cz/artkey/acu-201205-0001_biosorption-of-cu-zn-and-pb-by-thermophilic-bacteria-effect-of-biomass-concentration-on-biosorption-capacity.php
- Monteiro, C. M., Castro, P. M., & Malcata, F. X. (2012). Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnology progress, 28(2), 299-311. https://doi.org/10.1002/btpr.1504
- Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002
- Pathak, A., Dastidar, M. G., & Sreekrishnan, T. R. (2009). Bioleaching of heavy metals from sewage sludge: a review. Journal of environmental management, 90(8), 2343-2353. https://doi.org/10.1016/j.jenvman.2008.11.005
- Vijayaraghavan, K., & Yun, Y.-S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266-291. https://doi.org/10.1016/j.biotechadv.2008.02.002
- Perales-Vela, H. V., Peña-Castro, J. M., & Cañizares-Villanueva, R. O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 64(1), 1-10. https://doi.org/10.1016/j.chemosphere.2005.11.024
- Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(12), 2243-2257. https://doi.org/10.1016/j.biortech.2005.12.006
- Hima, K. A., Srinivasa, R. R., Vijaya, S. S., Jayakumar, S. B., Suryanarayana, V., & Venkateshwar, P. (2007). Biosorption: An eco-friendly alternative for heavy metal removal. African Journal of Biotechnology, 6(25), 2924-2931. https:// Voleskyorg/10.5897/ajb2007.000-2461
- Babel, S., & del Mundo Dacera, D. (2006). Heavy metal removal from contaminated sludge for land application: a review. Waste management, 26(9), 988-1004. https://doi.org/10.1016/j.wasman.2005.09.017
- Murugesan, G., Sathishkumar, M., & Swaminathan, K. (2006). Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresource Technology, 97(3), 483-487. https://doi.org/10.1016/j.biortech.2005.03.008
- Ahluwalia, S. S., & Goyal, D. (2005). Removal of Heavy Metals by Waste Tea Leaves from Aqueous Solution. Engineering in Life Sciences, 5(2), 158-162. https://doi.org/10.1002/elsc.200420066
- Prasenjit, B., & Sumathi, S. (2005). Uptake of chromium by Aspergillus foetidus. Journal of Material Cycles and Waste Management, 7(2), 88-92. https://doi.org/10.1007/s10163-005-0131-8
- Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30(2), 261-278. https://doi.org/10.1016/j.envint.2003.08.001
- Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2003). Biosorption of heavy metals. J. Chem. Environ, 7(4), 71-79.
- Da Costa, A. C. A., Antunes, W. M., Luna, A. S., & Henriques, C. A. (2003). An evaluation of copper biosorption by a brown seaweed under optimized conditions. Electronic Journal of Biotechnology, 6(3). https://doi.org/10.2225/vol6-issue3-fulltext-5
- Sala Cossich, E., Granhen Tavares, C. R., & Kakuta Ravagnani, T. M. (2002). Biosorption of chromium(III) by Sargassum sp. biomass. Electronic Journal of Biotechnology, 5(2). https://doi.org/10.2225/vol5-issue2-fulltext-4
- Verma, B., Shukla, N.P., 2000. Removal of nickel (II) from electroplating industry by agrowaste carbons. Indian Journal of Environmental Health 42 (4), 145–150.
- Low, K., Lee, C., & Leo, A. (1995). Removal of metals from electroplating wastes using banana pith. Bioresource Technology, 51(2), 227-231. https://doi.org/10.1016/0960-8524(94)00123-i
- Gray, N.F., 1999. Water Technology. John Wiley & Sons, New York, pp. 473–474.
- Friis et al., Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol. Bioeng., 28:21-28 (1998)
- Quek, S.Y., Wase, D.A.J., Forster, C.F., 1998. The use of sago waste for the sorption of lead and copper. Water SA 24, 251–256.
- Azab, M.S., El-Shora, H.M., Mohammed, H.A., 1995. Biosorption of cyanide from industrial wastewater. Al-Azhar Bulletin Science 6 (1), 311–323.
- Eccles, H. (1995). Removal of heavy metals from effluent streams — Why select a biological process? International Biodeterioration & Biodegradation, 35(1-3), 5–16.doi:10.1016/0964-8305(95)00044-6
- Volesky, B., & May-Phillips, H. A. (1995). Biosorption of heavy metals by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 42(5), 797-806. https://doi.org/10.1007/bf00171964
- Rulkens, W. H., Grotenhuis, J. T. C., & Tichý, R. (1995). Methods for Cleaning Contaminated Soils and Sediments. Heavy Metals, 165-191. https://doi.org/10.1007/978-3-642-79316-5_11
- Wang, Y., & Smith, R. (1994). Wastewater minimisation. Chemical Engineering Science, 49(7), 981-1006. https://doi.org/10.1016/0009-2509(94)80006-5
- Wehrheim, B., & Wettern, M. (1994). Biosorption of cadmium, copper and lead by isolated mother cell walls and whole cells of Chlorella fusca. Applied Microbiology and Biotechnology, 41(6), 725-728. https://doi.org/10.1007/bf00167291
- Pons, M. P., & Fuste M. C. (1993). Uranium uptake by immobilized cells of Pseudomonas strain EPS 5028. Applied Microbiology and Biotechnology, 39(4), 661-665. https://doi.org/10.1007/bf00205071
- Volesky, B., May, H., & Holan, Z. R. (1993). Cadmium biosorption by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 41(8), 826-829. https://doi.org/10.1002/bit.260410809
- Aksu, Z., Sag, Y., & Kutsal, T. (1992). The biosorpnon of copperod by vulgarisand Z.ramigera. Environmental Technology, 13(6), 579-586. https://doi.org/10.1080/09593339209385186
- Fourest, E., & Roux, J.-C. (1992). Heavy metal biosorption by fungal mycelial by-products: Mechanisms and influence of pH. Applied Microbiology and Biotechnology, 37(3), 399-403. https://doi.org/10.1007/bf00211001
- M. Gadd, Fungi and Yeasts for metal accumulation. In: c.L Ehrlich, Brierly, (Eds), Microbial Mineral Recovery. McGrawHill, New York, 249-276 (1990)
- Volesky, B., 1990. Biosorption of Heavy Metals. CRC Press, Boca Raton, FL.
- M. Gadd et al., Heavy metal and radionuclide by fungi and yeasts. In: P.R. Norris and D.P. Kelly (Editors), Biohydrometallurgy. A. Rowe, Chippenham, Wilts., U.K. (1988)
- Galun, M., Galun, E., Siegel, B. Z., Keller, P., Lehr, H., & Siegel, S. M. (1987). Removal of metal ions from aqueous solutions by Penicillium biomass: Kinetic and uptake parameters. Water, Air, and Soil Pollution, 33(3), 359-371. https://doi.org/10.1007/bf00294204
- Volesky, B. (1986). Biosorbent materials. In Biotechnology and bioengineering symposium(No. 16, pp. 121-126).