Abstract :
The addition of more greenhouse gases (GHG) to the earth’s atmosphere, which accounts for more than half of the planet’s warming potential, has resulted in changes in long-term average weather conditions, or climate change. In order to counter the increased concentration of carbon dioxide in the atmosphere, carbon sequestration is a newly developed strategy. Contrary to carbon emission reduction measures, carbon sequestration has a strong potential to lower carbon dioxide levels or mask carbon dioxide emission if the gas is trapped from several stationary sources and used effectively to produce chemical and energy. The implementation of carbon regulations has spread widely.
The cost of air pollution is credited with a monetary value. Due to this, investments in the growth of microalgae for carbon sequestration have received attention from all around the world. With these systems, existing carbon mitigation strategies are shown to be a viable and promising alternative. In general, the microorganism groups that make up microalgae are extremely diverse and quick-growing, and they are very skilled in photoautotrophic, heterotrophic, and mixotrophic settings. With a unit carbon dioxide fixation capacity 10–50 times greater than terrestrial plants, these microalgae can be grown on non-fertile land. Describe in detail the most recent advancement in the effective use of microalgae for carbon dioxide in this article review.
Keywords :
Biological characteristics, Carbon sequestration, climate change, Microalgae.References :
- Perry, A. (2003). Book Review: Climate change 2001: synthesis report. Third assessment report of the Intergovernmental Panel on Climate Change (IPCC); Climate change 2001: the scientific basis; Climate change 2001: impacts, adaptation, and vulnerability; Climate change 2001: mitigation. The Holocene, 13(5), 794-794.
https://doi.org/10.1177/095968360301300516
- Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M., & Rooney, D. W. (2021). Recent advances in carbon capture storage and utilization technologies: a review. Environmental Chemistry Letters, 19(2), 797-849. https:// doi. org/ 10. 1007/ s10311- 020- 01133-3
- Shukla, S. P., Gita, S., Bharti, V. S., Bhuvaneswari, G. R., & Wikramasinghe, W. A. A. D. L. (2017). Atmospheric carbon sequestration through microalgae: status, prospects, and challenges. Agro-Environmental Sustainability, 219-235. https:// doi. org/ 10. 1007/ 978-3- 319- 49724-2_ 10
- Zhou, W., Wang, J., Chen, P., Ji, C., Kang, Q., Lu, B. & Ruan, R. (2017). Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renewable and Sustainable Energy Reviews, 76, 1163-1175.https:// doi. org/ 10. 1016/j. rser. 2017. 03. 065
- Nakicenovic, N. (2007). World energy outlook 2007: China and India insights .https://doi.org/10.1787/weo-2007-en
- Srivastava, A., & Prasad, R. (2000). Triglycerides-based diesel fuels. Renewable and sustainable energy reviews, 4(2), 111-133. https://doi.org/10.1016/s1364-0321(99)00013-1
- Quirk, T. The secrets of the keeling curve
- Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., & Van Langenhove, H. (2010). Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in biotechnology, 28(7), 371-380. https://doi.org/10.1016/j.tibtech.2010.04.004
- Schneider, S. H., Semenov, S., Patwardhan, A., Burton, I., Magadza, C. H. D., Oppenheimer, M., & Yamin, F. (2007). Assessing key vulnerabilities and the risk from climate change. Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change. Ml parry, of canziani, JP palutik of, pj van der linden, and ce hanson, eds.
- Battisti, D. S., & Naylor, R. L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323(5911), 240-244. https://doi.org/10.1126/science.1164363
- Singh, S. K., Dixit, K., & Sundaram, S. (2014). Algal-based CO2 sequestration technology and global scenario of carbon credit market: a review. Am J Eng Res, 3(4), 35-37.
- Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., & Ruan, R. (2009). Cultivation of Green Algae Chlorella sp. in Different Wastewaters from Municipal Wastewater Treatment Plant. Applied Biochemistry and Biotechnology, 162(4), 1174-1186. https://doi.org/10.1007/s12010-009-8866-7
- Dębowski, M., Zieliński, M., Kisielewska, M., & Krzemieniewski, M. (2016). Efficiency of methane fermentation of waste microalgae biomass (WMAB) collected in processes of reclamation of eutrophicated water reservoirs. Environmental Earth Sciences, 75(6), 1-12.https://doi.org/10.1007/s12665-015-5168-y
- Gonzalez-Fernandez, C., Sialve, B., & Molinuevo-Salces, B. (2015). Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs. Bioresource technology, 198, 896- 906. https://doi.org/10.1016/j.biortech.2015.09.095
- Kinnunen, V., Craggs, R., & Rintala, J. (2014). Influence of temperature and pretreatments on the anaerobic digestion of wastewater grown microalgae in a laboratory-scale accumulating-volume reactor. Water research, 57, 247-257 https://doi.org/10.1016/j.watres.2014.03.043
- He, J., Wang, J., Deng, S., ZHAO, R., & ZHAO, L. (2017). Research progress on energy-efficiency analysis of carbon capture: theoretical model, evaluation tool and developing trend. Ind. Eng. Prog. (In Chinese).
- Bohutskyi, P., & Bouwer, E. (2013). Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. Advanced biofuels and bioproducts, 873-975.
- Mendez, L., Mahdy, A., Ballesteros, M., & González-Fernández, C. (2015). Chlorella vulgaris vs. cyanobacterial biomasses: Comparison in terms of biomass productivity and biogas yield. Energy conversion and management, 92, 137-142.https://doi.org/10.1016/j.enconman.2014.11.050
- Polakovičová, G., Kušnír, P., Nagyová, S., & Mikulec, J. (2012). Process integration of algae production and anaerobic digestion. In 15th international conference on process integration, modelling and(Vol. 29).
- Caporgno, M. P., Taleb, A., Olkiewicz, M., Font, J., Pruvost, J., Legrand, J., & Bengoa, C. (2015). Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane. Algal Research, 10, 232-239 https://doi.org/10.1016/j.algal.2015.05.011
- Mahdy, A., Mendez, L., Tomás‐Pejó, E., del Mar Morales, M., Ballesteros, M., & González‐Fernández, C. (2016). Influence of enzymatic hydrolysis on the biochemical methane potential of Chlorella vulgaris and Scenedesmus sp. Journal of Chemical Technology & Biotechnology, 91(5), 1299-1305.
- Schwede, S., Rehman, Z. U., Gerber, M., Thesis, C., & Span, R. (2013). Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass. Bioresource Technology, 143, 505-511. https://doi.org/10.1016/j.biortech.2013.06.043
- Sagemuller, I. (2006). Forest sinks under the United Nations framework convention on climate change and the Kyoto protocol: opportunity or risk for biodiversity. J. Envtl. L., 31, 189.
- Reyer, C., Guericke, M., & Ibisch, P. L. (2009). Climate change mitigation via afforestation, reforestation and deforestation avoidance: and what about adaptation to environmental change? New Forests, 38(1), 15-34.
- Jaiswal K K et al (2021) Photosynthetic microalgae–based carbon sequestration and generation of biomass in biorefinery approach for renewable biofuels for a cleaner environment. Biomass Convers Biorefinery. https:// doi. org/ 10. 1007/ s13399- 021- 01504-y
- Burniaux, J. M., Château, J., Duval, R., & Jamet, S. (2008). The economics of climate change mitigation: Policies and options for the future.
- Toichi, T. (2012). Balance between energy security and mitigation responses. In Climate Change Mitigation(pp. 63-87). Springer, London.https://doi.org/10.1007/978-1-4471-4228-7_4
- Folger, P. (2009, June). Carbon capture and sequestration (CCS). Library of Congress Washington DC Congressional Research Service.
- Singh, U. B., & Ahluwalia, A. S. (2013). Microalgae: a promising tool for carbon sequestration. Mitigation and Adaptation Strategies for Global Change, 18(1), 73-95. https://doi.org/10.1007/s11027-012-9393-3
- Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C., Frieler, K., Knutti, R., & Allen, M. R. (2009). Greenhouse-gas emission targets for limiting global warming to 2 C. Nature, 458(7242), 1158-1162. https://doi.org/10.1038/nature08017
- Cassia, R., Nocioni, M., Correa-Aragunde, N., & Lamattina, L. (2018). Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress. Frontiers in plant science, 9, 273. https://doi.org/10.3389/fpls.2018.00273
- Kassim, M. A., & Meng, T. K. (2017). Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Science of the total environment, 584, 1121-1129. https://doi.org/10.1016/j.scitotenv.2017.01.172
- Yadav, G., & Sen, R. (2017). Microalgal green refinery concept for biosequestration of carbon-dioxide vis-à-vis wastewater remediation and bioenergy production: Recent technological advances in climate research. Journal of CO2 Utilization, 17, 188-206.https://doi.org/10.1016/j.jcou.2016.12.006
- Cuellar-Bermudez, S. P., Garcia-Perez, J. S., Rittmann, B. E., & Parra-Saldivar, R. (2015). Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. Journal of Cleaner Production, 98, 53-65. https://doi.org/10.1016/j.jclepro.2014.03.034
- Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & De Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renewable and Sustainable Energy Reviews, 27, 622-653. https://doi.org/10.1016/j.rser.2013.05.063
- Jaiswal, K. K., Banerjee, I., Singh, D., Sajwan, P., & Chhetri, V. (2020). Ecological stress stimulus to improve microalgae biofuel generation: a review. Octa J Biosci, 8, 48-54.
- Serrano-Ruiz, J. C. (Ed.). (2015). New microbial technologies for advanced biofuels: Toward more sustainable production methods. CRC Press.
- Verma, R., & Srivastava, A. (2018). Carbon dioxide sequestration and its enhanced utilization by photoautotroph microalgae. Environmental development, 27, 95-106. https:// doi. org/ 10. 1016/j. envdev. 2018. 07. 004
- Xu X et al (2019) Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renew Sustain Energy Rev 110:65–82. https:// doi. org/ 10. 1016/j.rser. 2019. 04. 050
- Banerjee, I., Dutta, S., Pohrmen, C. B., Verma, R., & Singh, D. (2020). Microalgae-based carbon sequestration to mitigate climate change and application of nanomaterials in algal biorefinery. Octa J. Biosci, 8, 129-136.
- Farrelly, D. J., Everard, C. D., Fagan, C. C., & McDonnell, K. P. (2013). Carbon sequestration and the role of biological carbon mitigation: a review. Renewable and sustainable energy reviews, 21, 712-727 https://doi.org/10.1016/j.rser.2012.12.038
- Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020
- Show, P. L., Tang, M. S., Nagarajan, D., Ling, T. C., Ooi, C. W., & Chang, J. S. (2017). A holistic approach to managing microalgae for biofuel applications. International journal of molecular sciences, 18(1), 215. https://doi.org/10.3390/ijms18010215
- Harun, R., Singh, M., Forde, G. M., & Danquah, M. K. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and sustainable energy reviews, 14(3), 1037-1047. https://doi.org/10.1016/j.rser.2009.11.004
- Jaiswal, K. K., Kumar, V., Vlaskin, M. S., & Nanda, M. (2020). Impact of glyphosate herbicide stress on metabolic growth and lipid inducement in Chlorella sorokiniana UUIND6 for biodiesel production. Algal Research, 51, 102071. https://doi.org/10.1016/j.algal.2020.102071
- Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A., & Bux, F. (2011). Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresource technology, 102(1), 57-70. https://doi.org/10.1016/j.biortech.2010.06.077
- Maeda, K., Owada, M., Kimura, N., Omata, K., & Karube, I. (1995). CO 2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Conversion and Management, 6(36), 717-720. https://doi.org/10.1016/0196-8904(95)00105-m
- Metting, F. B. (1996). Biodiversity and application of microalgae. Journal of industrial microbiology, 17(5), 477-489 .https://doi.org/10.1007/bf01574779
- Cheng, L., Zhang, L., Chen, H., & Gao, C. (2006). Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and purification technology, 50(3), 324-329. https://doi.org/10.1016/j.seppur.2005.12.006
- Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., & Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource technology, 99(9), 3389-3396. https://doi.org/10.1016/j.biortech.2007.08.013
- De Morais, M. G., & Costa, J. A. V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology letters, 29(9), 1349-1352. https://doi.org/10.1007/s10529-007-9394-6
- Kodama, M. (1993). A new species of highly CO_2 tolerant fast growing marine microalga suitable for high-density culture. J Mar Biotechnol, 1, 21-25.
- Sung, K. D., Lee, J. S., Shin, C. S., Park, S. C., & Choi, M. J. (1999). CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresource technology, 68(3), 269-273.
- Miyairi, S. (1995). CO2 assimilation in a thermophilic cyanobacterium. Energy conversion and management, 36(6-9), 763-766. https://doi.org/10.1016/0196-8904(95)00116-u
- Salih, F. M. (2011).Microalgae tolerance to high concentrations of carbon dioxide: a review. Journal of Environmental Protection, 2(05), 648.
- Li, W., & Kang, S. (2011). Research status and development ideas of microalgae carbon se-questration technology. Biotechn, 6, 22-27.
- WenGuang, Z. H. O. U., & RongSheng, R. U. A. N. (2014). Biological mitigation of carbon dioxide via microalgae: recent development and future direction. Scientia Sinica Chimica, 44(1), 63-78.. https://doi.org/10.1360/032013-256
- Browne, J. D., Allen, E., & Murphy, J. D. (2013). Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester. Environmental technology, 34(13-14), 2027-2038. https://doi.org/10.1080/09593330.2013.812669
- Yuan, X., Shi, X., Zhang, D., Qiu, Y., Guo, R., & Wang, L. (2011). Biogas production and microcystin biodegradation in anaerobic digestion of blue algae. Energy & Environmental Science, 4(4), 1511-1515. .https://doi.org/10.1039/c0ee00452a
- Santos-Ballardo, D. U., Rossi, S., Reyes-Moreno, C., & Valdez-Ortiz, A. (2016). Microalgae potential as a biogas source: current status, restraints and future trends. Reviews in Environmental Science and Bio/Technology, 15(2), 243-264. https://doi.org/10.1007/s11157-016-9392-z
- Mendez, L., Mahdy, A., Timmers, R. A., Ballesteros, M., & González-Fernández, C. (2013). Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresource technology, 149, 136-141. https://doi.org/10.1016/j.biortech.2013.08.136