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ABSTRACT: Climatic factors determine the amount and distribution of atmospheric water received at the land surface while the 

land cover conditions determine the partitioning of this water into different hydrological components and ultimately the catchment 

surface water yields. This study assessed the effects of deforestation of a tropical catchment on surface water yields to address 

fluctuating flows of the rivers emanating from Mau Forest, the largest water tower in Kenya. Sondu basin traverses Southwest Mau 

Forest covering an area of 3500 km2. The main channel in the basin flows in a southwest direction into Lake Victoria in an altitudinal 

range of 2900 to 1130 m a.s.l over a length of 173 km. Different deforestation scenarios over the basin were integrated with climate 

data to form inputs to a hydrologic model, Soil and Water Assessment Tool (SWAT). Using model outputs, the effects of 

deforestation on annual and seasonal surface water yields, represented by changes in streamflow volumes under different 

deforestation scenarios, were evaluated. Deforestation scenarios were derived from a supervised classification scheme of time series 

of LANDSAT images (1970-2020) to show deforestation trends. Effects of deforestation on the catchment water-yielding capacity 

were estimated as the ratio of the difference between simulated yields under different deforestation scenarios and those simulated 

under the pre-deforestation scenario of the 1970s decade. Results show that forest cover declined by 21% and a corresponding 

growth in land under agriculture by 26% in the period 1970-2020.  The decline in forest coverage resulted in an increase in the 

annual surface water yields of about 23% (from 152 to 187 MCM/year) throughout the period of study. This implies that there is 

less recharge of groundwater due to decreased infiltration and subsequent storage leading to lower flows during the dry seasons and 

increased flood frequencies in the basin during the wet seasons. The study has therefore, demonstrated that deforestation has reduced 

the stability of Mau Forest as a water tower and conservation of the forest will enhance its water-holding capacity thereby ensuring 

a stable water supply to rivers emanating from it as a way of combating floods and low flows in the basin. The resultant impacts on 

environment and society are displacements from floods and destruction of properties. 
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INTRODUCTION 

Water  is a necessary factor for the sustenance of natural ecosystems that support our existence, and also a critical factor in economic 

productivity, and sustainable livelihoods (1–7). Freshwater has become increasingly scarce as a result of  a growing demand for 

domestic, agricultural, and industrial use coupled with unsustainable use and pollution from anthropogenic activities and land use 

and land cover (LULC) changes (8–10).  Land use, described as the human exploitation and utilization of land resources (11), is an 

essential part of the terrestrial component of the hydrologic cycle. Changes in land use tend to alter land surface cover which has a 

significant influence on the catchment hydrology (12).  

Pressure on land resources for purposes of providing food, water, and shelter to the ever-growing human population has brought 

about notable changes in LULC with corresponding impacts on hydrological regimes of watershed areas (13–19). Among the most 

notable LULC changes that impact a catchment’s surface water yield is deforestation; the permanent alteration of a forest to another 

on-forest  use such as agriculture or urban development (20–24). It is well documented that deforestation primarily reduces the base 

flow from rivers impacting water availability for competing needs by residents (25,26). In regions where there is limited water 

availability, such changes are likely to add to the scarcity of water supply particularly during the dry seasons. Understanding the 
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impacts of deforestation on the hydrological process in a catchment area is therefore an essential task for water resources planning 

for the growing human populations that threaten to stretch this scarce resource to its limit (7,26,27). 

Research has demonstrated that as the forest area shrinks and developed land expands, base flow in streams and rivers tends to 

reduce as a result of reduced recharge of groundwater reservoirs (28–32). There is a need to assess changes in the level of 

deforestation in a watershed to determine how they impact its surface water yielding capacity which is inversely proportional to the 

base flow yields (32). Globally, deforestation assessment has been done using multispectral satellite images (33,34). Time series of 

satellite images is used to derive changes in LULC that include the level of forest cover in a watershed. A series of multispectral 

LULC classifications are analyzed to determine the inter-annual or inter-decadal changes (18,35). 

Several studies on the impacts of deforestation on water resources have been carried out in Kenya. Baker and Miller (2013) found 

that deforestation within the upper Njoro River catchment brought about increased surface runoff and decreased groundwater 

recharge. (37) reported that deforestation within the Nyando River catchment resulted in increased surface runoff volumes. (14) 

reported an increase in surface runoff from about 55% to 68% as agricultural land cover over Nzoia basin increased from about 40% 

to about 64% and forest cover decreased from about 12% to about 7% between 1973 and 2001. Mungaia (2004) established that the 

alteration of pastureland and natural forest cover into small-scale farming fields in the upper catchment of Ewaso Ng’iro River 

resulted in decreased infiltration leading to increased surface runoffs and flash floods.  

The Mau Forest Complex (MFC), one of the few remaining natural forests in East Africa, is a contiguous Indigenous forest 

comprising the largest water tower in Kenya (5,16,39,40) and  makes up the upper catchments of the main rivers draining into Lake 

Victoria from Kenya (41,42). The forest is also home to a rich diversity of natural resources that include, inter alia, forest products, 

micro-climate regulation and water supply (42). Notwithstanding its regional significance as critical a water resource, the forest has 

experienced widespread deforestation and degradation over the past few decades (42,43). Just like other high water potential areas 

in Kenya, the MFC is threatened by the growing human population where agriculture and settlements are continually taking high 

priority (39). This has resulted in large tracts of the forest, previously conserved as protected areas, being excised for settlement and 

agriculture since the late 1940s (16,43,44). Excision and the extensive encroachment of the forest land have destroyed over 25% of 

the forest since the year 2000 which explicates the threat of unplanned urban development and population growth from upscaled 

economic activities (42). 

This study attempted to investigate the effects of catchment deforestation on surface water yields in an area that is experiencing 

rapid socio-economic development coupled with high human population growth (42). Specifically, the study attempted to evaluate 

how deforestation affects surface water yields by quantifying its contribution to changes in streamflow volumes of River Sondu 

between the 1970s- and 2020s-decades using SWAT hydrologic model.  

 

2. MATERIALS AND METHODS 

2.1 Area of study 

This study was conducted in Sondu River basin on the western side of Kenya between latitudes 00º23'S and 01º10'S and longitudes 

34º46'E and 35º45'E and covering an area of about 3500 km2 (Figure 1). River Sondu emanates from Sondu-Miriu Wetlands (45) 

and is fed by several tributaries, whose source area is the South West Mau block. The longest channel of the river traverses about 

173 km from the source areas to Lake Victoria. Sondu River drops about 1800 m between the source areas at about 2900 m and the 

lake level at about 1130 m above sea level (42,46). 

The general land uses in the basin are agriculture, forest, rain-fed shrub crop (tea estates) mainly on the upper elevations bordering 

the forest, and settlements scattered across the basin (5,47,48). The area under forest comprises the forest reserve and covers about 

84000 ha, which is about 20% of the total Mau Forest coverage. Thick Afromontane vegetation typifies the forest reserve (39,42), 

which plays a critical role in water flow regulation, and comprises of tall, evergreen species that fizzle out to usher in dense bamboo 

bushes upstream. The areas around the forest experience annual rainfall that ranges between 1500 and 2100 mm. The forest is a 

source of perennial streams that feed into the main River Sondu, the main source of water to the surrounding tea estates as well as 

the shores of Lake Victoria South Catchment Area (42,44). 

Since the study focused on quantifying how deforestation effects surface water yields, Kiptiget sub-basin (numbers 11 and 12 in 

Figure 1), was selected as the study unit. South West Mau Forest covers the entire upper catchment of Kiptiget River which 
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constitutes a critical tributary of the main Sondu River. Any changes in the forest coverage therefore would be reflected in its flow 

volumes. 

 
Figure 1: Sondu River basin map showing the gauging stations network; numbers 1 to 17 represent the 17 sub-basins that comprise 

Sondu Basin. Sub-basins 11 and 12, which traverse the South West Mau Forest reserve with their outlet at Kiptiget River Gauging 

Station (RGS), are the focus of this study  

 

2.2 Assessment of Deforestation 

Sondu River basin is home to the large expanse of tea plantations that attract plantation workers from this region and beyond. This 

has resulted in the basin experiencing rapid socio-economic development that has resulted in unprecedented LULC changes over 

the last five decades (42). This has seen the SWM forest lose a significant part of its natural cover since the 1970s decade (44). To 

quantify the level of deforestation of SWM forest as a result of this development, six historical multispectral satellite images of the 

basin taken by sensors aboard LANDSAT MSS (1973), LANDSAT TM (1986), LANDSAT TM (1995), LANDSAT ETM (2000), 

LANDSAT ETM+ (2010), and LANDSAT ETM+ (2018) were used. For purposes of this study, the satellite images were used to 

represent the basin’s LULC conditions of the 1970s, 1980s, 1990s, 2000s, 2010s, and 2020s respectively. 

The satellite images were obtained from the Department of Resource Survey and Remote Sensing (DRSRS) in false colour 

composite and were interpreted using a supervised classification scheme (7,46,49,50), guided by the AFRICOVER vegetation 

classification system (51), to show areas of deforestation in the catchment. Image classification of the false colour composite images 

of LANDSAT was used to obtain LULC thematic maps (52,53). Temporal changes in LULC between the 1970s and 2000s decades 

were compared over a 10-year interval and trends in deforestation were evaluated by comparing percentage changes in forest 

coverage at different times with the baseline forest cover of the 1970s decade. Specifically, the trend of deforestation was analyzed 

for the number of hectares of forest that were converted to non-forest lands. 

2.3 Hydrological Modelling 

Soil and Water Assessment Tool (SWAT) hydrologic model ((54), is a conceptual physically-based model operating on a daily 

time-step to simulate the hydrology of a watershed designed for predicting the impacts of catchment management practices, such as 

LULC change, on water quantity and quality. The model was chosen to simulate streamflow under different forest cover scenarios 

on account of its suitability for simulation of runoff generation and its ability to integrate different types of spatial data. Model 

inputs included: Digital Elevation Model (DEM), LULC, soil type  and climate data from the basin (15,55). 
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The global Shuttle Radar Topography Mission (SRTM) 90 m DEM was applied in the delineation of the watershed into sub-basins 

and stream networks. The 1973, 1986, 2000, and 2010 LULC, cover maps derived from satellite images were reclassified into four 

SWAT model format categories comprising agriculture, rainfed shrub crops, open and closed forests. The spatial soil data were geo-

processed to a format compatible with ArcSWAT (swat.tamu.edu/software/arcswat/) and then appended to the user soil data set 

(32,56).  

The Model simulated the terrestrial phase of the hydrologic cycle using the water balance concept (Equation 1). 

𝑆𝑊𝑡 = 𝑆𝑊𝑜 +∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 −𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)
𝑡
𝑖=1    (1) 

Where tSW  represents the soil water content at time t, oSW  represents the soil water content on day i, t  represents time in days, 

dayR  represents the amount of rainfall on day i, surfQ  represents the amount of runoff on day i, aE  represents the amount of 

evapotranspiration on day i, seepW  represents the amount of water entering the vadoze zone on day i, and gwQ  represents the 

amount of groundwater flow on day i (57). 

2.4 Effects of Deforestation on Surface Water Yields 

Analyses of the effects of deforestation on surface water yields were carried out by performing four model runs (58) driven by 

simulated weather data from the Providing Regional Climate for Impact Studies (PRECIS) model for the period 1971 to 2010 and 

LULC scenarios of the 1970s, 1980s, 1990s, and 2000s decades respectively. For purposes of this study, the four LULC scenarios 

for the four decades were coded as LU1970s, LU1980s, LU1990s, and LU2000s respectively.  

The four model runs were driven by the same time series of weather (daily) and climate (mean monthly) data between 1971 and 

2010. From one model run to the next, the only model parameters that were varied were those that were defined by the different 

LULC scenario maps of the watershed: LU1970s, LU1980s, LU1990s, and LU2000s. Therefore, any changes in the simulated 

surface water yields from one run to the other were ascribed to variations in the level of forest coverage of the watershed.  The 

effects of deforestation on the catchment surface water yielding capacity were therefore estimated using the ratio of the difference 

between the simulated streamflow under the LU1980s, LU1990s, and LU2000s forest coverage scenarios to the streamflow under 

the LU1970s baseline scenario. 

  

3. RESULTS AND DISCUSSIONS 

3.1 Changes in LULC  

A total of three main LULC categories were delineated in the upper parts of the basin that mainly comprise the SWM forest; forest 

land, grassland, and cropland (Figures 2 and 3). Figure 2 shows temporal while Figure 3 shows spatial-temporal changes in the 

different categories of LULC between the 1970s and the 2020s decades. It was noted from Figure 2 that as of the baseline decade 

(1970s), the areal extent of these LULC categories were; forest (86.7%), grassland (9.7%), and cropland (3.5%). This coverage has 

since changed with time where forest coverage declined to an all-time low of 58.9% in the 2010s before rising to settle at 65.7% in 

the 2020s decade. Grassland, on the other hand, rose to an all-time high of 25.9% in the 2000s decade before declining to settle at 

an all-time low of 5.1% in the 2020s decade while cropland has consistently risen from an all-time low in the 1970s to an all-time-

high of 29.2% in the 2020s. Figure 3 shows that these changes in the LULC categories are mainly concentrated in the northeastern 

upper parts of the basin. This is a clear indication that the SWM forest reserve has undergone some extent of deforestation where 

forest land has been converted to grassland and cropland. This has the potential to affect the catchment hydrology leading to changes 

in surface water yields and rainwater storage in the basin leading to the frequent flooding incidences in the basin witnessed in the 

last decades.    

Encroachment and degazettement of forest reserves for purposes of settling a growing population are the main forces behind the 

deforestation of the SWM forest reserve (59). The decrease in forest coverage and the corresponding increase in land under 

agriculture is clear evidence that there has indeed been some deforestation in this watershed where previously land under forest 

coverage has been cultivated. This deforestation is likely to negatively influence the hydrology of the area through reduced 

infiltration, and subsequent subsurface storage, thus leading to enhanced surface runoff and increased incidences of flooding as has 

been experienced lately. 
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Figure 2: Temporal evolution of the three dominant LULC categories in the South West Mau Forest over six decades; 1970s, 1980s, 

1990s, 2000s, 2010s, and 2020s. The area under forest is on a decreasing trend while that under cropland is on an increasing trend.  

 

Table 1 column 2 shows the 1970s baseline LULC status within the southwest Mau Forest reserve while columns 3, 5, 7, 9, and 11 

show the status in the 1980s, 1990s, 2000s, 2010s, and 2020s decades respectively. Columns 4, 6, 8, 10, and 12 show the percentage 

changes in LULC coverage concerning the baseline (1970s decade) coverage during the 1980s, 1990s, 2000s, 2010s, and 2020s 

decades respectively. Positive values in columns 4, 6, 8, 10, and 12 signify an increase while negative values signify a decrease in 

the extent of areal coverage of main categories of LULC in SWM forest reserve compared to the baseline status of the 1970s. 

Generally, the total forest coverage in the area has been on a declining trend while cropland coverage has been on a continuously 

increasing rise to over seven times the initial coverage. Grassland coverage has also been on an increasing trend up to the 2000s 

decade when the trend reversed. These variations are indeed an indication that the area experienced deforestation.  A growing 

population and competing urbanization needs have resulted in reduced forest cover impacting the water flow in the region. Increased 

anthropogenic activities by forest-dependent communities to increase food production for their livelihoods and economic 

empowerment contribute to the experienced deforestation (Figure 2 and Table 1). 

 

Table 1: Evolution of different LULC types over the South West Mau Forest from the 1970s to 2020s relative to the 1970s 

decade 

 

1970s 1980s 1990s 2000s 2010s 2020s 

1 2 3 4 5 6 7 8 9 10 11 12 

LULC Ha Ha %Var. Ha %Var.  Ha %Var. Ha %Var. Ha %Vari. 

Forest 73174.4 69353.4 -5.2 64272.4 -12.2 55945.5 -23.5 49638.0 -32.2 55368.8 -24.3 

Grassland 8187.8 11008.9 34.5 13597.0 66.1 21832.0 166.6 12978.6 58.5 4288.6 -47.6 

Cropland 2912.2 3912.2 34.3 6405.0 119.9 6496.9 123.1 21657.9 643.7 24617.0 745.3 
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Figure 3: Spatiotemporal evolution of the three dominant LULCs in the South West Mau Forest over six decades; 1970s, 1980s, 

1990s, 2000s, 2010s, and 2020s. The forest has over the years been encroached from the northeastern side 

 

3.2 Model Simulations 

Figure 4 presents the results of observed and model-simulated mean monthly surface water yields at Kiptiget RGS on the immediate 

downstream of South West Mau Forest. Based on the results of calibration, with the coefficient of determination (R2 = 60%), the 

model performance was rated as satisfactory (60), results show that observed and simulated water yields were in agreement. The 

model captured the patterns of monthly surface water yields quite well in all the months except August where the model indicated 

a high flow while the observed indicated a low flow. This could be attributed to the fact that the model-simulated flows follow a 

smoother curve than that of the observed flows leading to a slight lag in the model-simulated flows. The smoothing of the model 

simulated curve results from the model parameter estimations so that the model only estimates the flows. Overall, the model captured 

the high and low flows quite well indicating that the model could indeed be used to simulate stream flows in the area. 
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Figure 4: Comparison of observed and model-simulated monthly surface water yields (MCM) at Kiptiget RGS. Model simulations 

replicate observations fairly well as shown by the peaks and troughs 

 

Figure 5 presents a correlation of gauge-observed and model-simulated average monthly surface water yields. These results show 

that observed and simulated mean monthly surface water yields in the area are highly correlated (r = 0.81 and R2 = 0.66). This is an 

affirmation that the model is suitable for the area of study and could therefore be used to simulate surface water yields. 

 
Figure 5: Correlation of mean monthly observed and simulated   water yields (cms) at Kiptiget RGS. There is a strong correlation 

(r = 0.81) between simulated and observed surface water yields hence the model is suitable for this area 

 

3.4 Effects of Deforestation on Surface Water Yields 

Figure 6 presents percentage variations in mean annual surface water yields under different LULC scenarios based on the 1970s-

decade baseline LULC scenario at Kiptiget RGS. These results show that as the forest coverage declined due to conversion to other 

uses, there was a progressive increase in surface water yields between the 1970s and 2010s decades of up to 23%. This increasing 

trend in surface water yields was in line with the decreasing trend in forest coverage (Figure 2) where loss of natural forest cover is 

known to reduce infiltration thereby causing more rainwater to reach the river system as direct surface runoff with very little of it 

going to groundwater recharge. In such circumstances, flood incidences tend to increase during the wet seasons while low flows 

during the dry seasons progressively become lower due to the reduced groundwater component of streamflow. Therefore, it was 
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concluded that deforestation of the area has led to enhanced surface water yields at a rate of 7.5% between the 1970s and 2010s 

decade. This could explain the increased incidents of floods in the basin as well as the surrounding areas in recent decades.   

 

 
Figure 6: Variations in the mean annual surface water yields with deforestation relative to the 1970s baseline forest cover scenario. 

Surface water yields have risen by over 22% of the 1970s-decade levels hence the area is becoming prone to flooding with 

deforestation  

 

Given that the same climate data were used during all the simulations under different LULC scenarios, observed variations in surface 

water yields were ascribed to the changes in the level of forest coverage which tends to alter the hydrology of a catchment area. 

Further, given that the 1970s-decade LULC scenario (LU70s) has the highest forest coverage while the 2000s-decade scenario 

(LU00s) has the lowest coverage (Figure 2 and Table 1), it was clear that deforestation tends to increase annual surface water yields 

in the basin by about 7.5% per decade.  

The observed increases in surface water yields resulting from deforestation may be attributed to reduced infiltration and 

evapotranspiration following deforestation of the watershed. While reduced evapotranspiration directly feeds into increasing the 

yields by reducing the volume of water that is lost back to the atmosphere, reduced infiltration leads to less soil and groundwater 

recharge and hence less storage during wet seasons. With less soil and groundwater storage, the volume of water flowing in streams 

during the relatively dry seasons will decrease. This negates the gains of increased yields since less water will be available when it 

is needed most unless artificial storage reservoirs are availed.  Therefore, increases in surface water yields with declining forest 

coverage are not sustainable as the reduction in infiltration rates tends to reduce the subsurface and groundwater flow components 

of streamflow that are key in sustaining surface water yields during the dry seasons.  

Figure 7 presents a regression of variations in annual surface water yields relative to those of the 1970s on different levels of forest 

coverage to establish the relative changes in water yields resulting from unit changes in the level of deforestation. These results 

indicated that indeed annual surface water yields highly depend on the extent of the forest coverage. As the extent of deforestation 

increased, annual surface water yields also increased. A unit area deforested in the catchment increased annual surface water yields 

by about 0.9% of the 1970s baseline water yields. Essentially this increase in surface water yields is realized at the expense of 

groundwater recharge which eventually leads to reduced baseflow. Therefore, deforestation, which is attributable to about 87% of 

the increase in surface water yields (R2 = 0.87) could explain the high frequency of flood incidents in this area. 
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Figure 7: Regression of surface water yields on deforestation showing that deforestation accounts for over 87% of the variations in 

surface water yields 

 

3.6 Conclusion  

This study has established that indeed Sondu River basin has experienced deforestation in the last five decades with agriculture 

being the main driver of deforestation. The focus on improving livelihoods through enhanced food security contributes to 

deforestation by society as they seek to sustain their existence of a growing population. Overall, the entire basin forest cover 

decreased from 86.8% to 65.7% between the 1970s and 2020s while cropland has increased from 3.5% to 29.2% in the same period.  

The study has also shown that effects of deforestation on annual surface water yields cannot be wished away. As the area under 

natural forest cover decreased, the total annual surface water yields increased. Removal of natural forest cover and its subsequent 

replacement with other non-forest land uses tends to increase the amount of effective annual rainfall that finds its way to the river 

system as direct surface runoff; thus, increasing the total annual surface water yields.  Deforestation therefore generally tends to 

increase the total annual surface runoff. This is possibly due to the reduced net capacity of soil and ground water storage leading to 

more direct surface runoff to the rivers and streams during rainy seasons. The increase in surface runoff increases the risk of flooding 

in the area following high-magnitude rainfall events. 

With the reduced groundwater recharge as a result of decreased infiltration, the base flow of the river system in the area is expected 

to decrease with time as the groundwater withdrawal as base flow during the relatively dry seasons is not matched by corresponding 

recharge during the rainy seasons. We may therefore expect reduced dry season flows which will have a negative impact on the 

water supplies unless artificial storage reservoirs are put in place.  
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