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ABSTRACT: Seed qualities including viability and germination significantly influence the quantity and the quality of harvest. 

Technological means to assess seed qualities and attributes of seed-derived food products are varied. This paper highlights the use 

of infrared hyperspectral imaging (NIR- HSI) in food quality control, authentication, safety, process monitoring, shelf-life 

prediction, ingredients analysis, allergens detection and food sorting and grading. It also shows a particular application of NIR-HSI 

for the monitoring of nutrient content of sprouts and germinated seeds for industrial processing of foods with high nutritional values. 

The paper further reviews the applications of NIR-HSI to predict seed viability and germination. The non-destructive, rapid, and 

high-throughput capability of NIR-HSI were demonstrated through research works combining the NIR-HSI technology with 

chemometrics tools to reach more than 90% prediction rate. These relatively high rates may depend on the storage conditions or the 

stringency of the artificial aging conditions applied to parts of the seeds. However, the NIR-HSI has also proven efficient using 

naturally aged seeds with the prediction rates up to 90% correct classification, demonstrating the high capability of the technology. 

In combination with advanced chemometrics tools, some components of emerging technologies such as traditional machine learning 

and deep learning models have been added to increase the efficiency of NIR_HSI. Overall, the research works reviewed in this 

paper and which cover several food crops and food products showed that NIR-HSI is set to reach new heights in monitoring seed 

viability for improved seed stock management, crop production and innovation in the food industry. 
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INTRODUCTION 

Seed viability translating to the capacity of the seed to germinate is vital for humans with regards to food and nutrition 

security, animal feeds, medicinal plants and the equilibrium of ecosystems. Germination is the first step which determines the 

survival, the growth and the quality of plant production. Thus, seed viability and seed germination are key themes of scientific 

research globally. They are studied by several fields of science which address different questions, but which all contribute to the 

understanding and knowledge of these two complex biological phenomena (1, 2, 3, 4). While seed viability defined as the ability of 

the embryo to germinate measures whether individual seeds are dead or alive within a seed lot, seed germination is the capacity of 

the seed to produce a satisfactory plant under favorable conditions. On the food and nutrition security aspects, seed germination is 

not only required for continued crop production, it is also important for the industrial production of highly nutritious and organoleptic 

food products processed directly using germinated seeds and sprouts. Indeed, pre-germination appears to be an easy and cost-

effective way of enhancing the nutritional values of edible seeds (5, 6, 7, 8, 9).  

In relation to the importance of germination for humans as stated above, the number of scientific fields, technologies, 

informatics tools and statistical approaches to tackle various aspects of seed viability and germination for food production and food 

processing is increasing. Among these technologies, near infrared spectroscopy (NIR) and near infrared hyperspectral imaging 

(NIR-HSI) are increasingly used to get greater insights into seed viability and germination. Near infrared spectroscopy is a 

technology for measuring chemical constituents of intact biological materials without destroying the materials, thus providing the 

possibility to use the intact materials for other purposes (e.g. germination for seeds). It is based on the vibration properties (overtones 

and combination vibrations) of major X-H chemical bonds within organic molecules (C–H, O–H and N–H) and their interactions 

with infrared radiation. Hyperspectral imaging (HSI) is a high throughput imaging technology which allows to target the entire 

materials under study, or to choose specific regions of interest within the materials. Both approaches (NIR and HSI) can be combined 

to obtain the near infrared hyperspectral imaging (NIR-HSI) approach for a non-destructive, rapid and high throughput 
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determination of the spectral (seed chemical composition), and the spatial information (regions of interest) from a sample (10, 11, 

12). The NIR-HSI technology acquires thousands of spectra from the entire sample or from a fraction of the sample from images 

obtained in the near infrared (780-2500 nm), contrary to the classical NIR which acquires only one spectrum representing the average 

of the analyzed sample in the same spectral range (13, 11). One of the main advantages of NIR-HSI over NIR is to allow the 

simultaneous assessment of the spectral and spatial distribution of the chemical composition of samples (10, 11, 12, 14, 15), therefore 

giving the possibility to discriminate different parts of the same sample according to their chemical composition. Further, NIR-HSI 

images allow a direct and qualitative comparison of two or more samples (16, 17). The present review addresses the use of near 

infrared hyperspectral imaging in food technologies and highlights specific details on the use of the technology in the key steps of 

food production, namely seed viability and germination.  

Near infrared hyperspectral imaging in food technologies 

The near infrared hyperspectral imaging is applicable to solid samples as well as liquid samples, thus the variety of its 

applications in food technologies to a large range of food products. Several studies using the near infrared hyperspectral technology 

have contributed to various areas of food technologies including food quality control and authentication (18, 19, 20, 21), food safety 

assessment (22, 23, 24, 25), food process monitoring and optimization (26, 27, 28), food shelf-life prediction (29, 30), food 

ingredients analysis (31, 32), food allergens detection (33, 34), and food sorting and grading (35). These research works showed 

that NIR-HSI covers notable areas of food technologies. In the industrial processing of sprouts and germinated seeds used directly 

as raw materials to make highly nutritious food products, NIR-HSI is efficiently used to monitor and to optimize the levels of key 

nutrients and organoleptic attributes. The applications of NIR-HSI to germinated seed and sprouts in the food industry follow the 

same procedures as in the applications to determines nutrient content of non-germinated seeds (36, 37, 38, 39), with the added aspect 

of monitoring the evolution of the nutrient content over time during the germination process.  

Near infrared hyperspectral imaging to assess seed viability and germination 

In this area, the objective of most research works using NIR-HSI is to predict seed viability and seed germination using a non-

destructive, rapid, and high-throughput method to screen seed lots for crop improvement, commercial purposes, and germplasm 

conservation as summarized in Table 1. This applies also to the monitoring of the germination process from the imbibition of the 

seed to the visible germination stage when the radicle emerges. 

 

Table 1: Research works on the use of near infrared spectroscopy and near infrared hyperspectral imaging to assess seed 

viability and seed germination 

Food crop Aims of the 

research 

Technological, statistical and 

informatics approaches 

State of the 

seeds used 

Results of the best 

classification model 

Authors 

Bottle gourd Classify seed 

germination 

ability 

NIR-HSI and 

Partial least squares discriminant 

analysis (PLSDA) 

Stored during 

one year 

More than 75 % 17 

Spinach 

 

Predict 

viability 

NIR and 

Extended canonical variates analysis 

(ECVA) 

Artificially 

aged 

More than 85 % 40 

Determine 

seed viability 

NIR-HSI and 

Support vector machine (SMV) 

Naturally aged At 90% 45 

Muskmelon Predict 

viability and 

vigor 

NIR-HSI and 

Partial least squares discriminant 

analysis (PLSDA)-SR 

Artificially 

aged 

More than 90 % 41 

Watermelon Establish a 

continuous 

process to 

visualize 

seed viability 

NIR-HSI and 

Partial least squares discriminant 

analysis (PLSDA) 

Naturally aged More than 90 % 48 
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Tomato Predict 

viability 

NIR and 

Modified partial least squares (MPLS), 

Partial least squares (PLS), 

Principal component regression (PCR) 

Artificially 

aged 

*R2=0.939 

**RPD=3.96, 

42 

Maize/Corn Predict seed 

germination 

rate 

NIR and 

Partial least squares regression (PLSR) 

Stored from 

three months 

to two years 

under 

uncontrolled 

room 

conditions 

***RMSEP=8.88% 43 

Identify the 

viability 

NIR-HSI and 

Multi-scale 3D convolutional neural, 

Network (multi-scale 3DCNN, 

YOLOv7 and Mask R-CNN 

Artificially 

aged 

More than 90 % 49 

Rice 

 

 

Determine 

seed viability 

and vigor 

NIR-HSI and 

Deep learning and conventional methods 

Naturally aged More than 85 % 47 

Determine 

vigor 

NIR-HSI and 

Convolutional neural network (CNN) 

Artificially 

aged 

At 90 % 50 

Determine 

seed vigor 

NIR-HSI and 

Self-built Convolutional neural network 

CNN (Self-built CNN), 

ResNet18, 

Partial least squares discriminant 

analysis (PLSDA), 

Support vector machine (SMV) 

Artificially 

aged 

More than 99 % 44 

Wheat Predict vigor 

during 

storage 

Vis/NIR, SWIR HSI and 

Partial least-squares regression (PLS-R) 

Artificially 

aged 

R2=0.921 

****RMSE=5.137% 

46 

Soybean Classify seed 

vigor levels 

NIR and 

Partial least squares discriminant 

analysis (PLSDA) 

Naturally aged 

and 

Artificially 

aged 

More than 85 % 51 

Notes: *R2: Coefficient of determination; **RPD: Ratio of Performance to Deviation; ***RMSEP: Root mean standard error of 

prediction; ****RMSE: Root mean square error 

 

The search for the most suitable wavelengths is done through the analysis of the best models for the prediction and the 

classification of seed viability and germination using NIR and NIR-HSI data. The studies compared different models using 

chemometrics tools (statistical analyses of chemical data), and selected the most important variables of classification for the 

construction of the best models (Table 1). They also determined the factors underlying the differences between viable and non-

viable seeds, or between germinated and non-germinated seeds by identifying the most discriminating wavelengths associated with 

seed chemical content. To date, emerging technologies such as artificial intelligence and related approaches combined with 

improved chemometrics tools are augmenting the throughput and the efficiency of NIR-HSI for the production of more nutritious 

edible seeds, and for the processing, uniformity, authentication and safety of derived food products.  
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CONCLUSION 

Mature edible seeds reach a maximum germination potential which gradually decreases after harvest, depending on the 

duration and conditions of storage. The loss of germination power over time affects all types of seeds to various extents. Overall, 

advances in current research indicate that the use of NIR and NIR-HSI technology and the development of prediction models for 

seed viability has led to fast, high-throughput, non-destructive and cost-effective assessment of seed germination. This further leads 

to improved management of seed lots for seedbanks, crop production, commercial and industrial uses. In the majority of the previous 

studies using classical methods, seeds were manually sorted into viable and non-viable after artificial aging, or separated into 

germinated and non-germinated (non-viable) after the germination tests. Thereafter, substantial technical efforts were deployed to 

develop the methodologies for NIR or NIR-HSI prediction models. Current research are mostly focused on the classification of 

naturally aged seeds for a direct application of the findings. Prediction models obtained from such studies have greater potential to 

remove non-viable seeds from seed lots thereby avoiding the misclassification caused by human subjectivity. Thus, the applications 

of near infrared hyperspectral imaging have increased substantially the efficiency of monitoring the viability and the germination 

of edible seed for crop production, industrial processing and quality control of food products. The versatility and the accuracy of 

this technology make it a prime tool for food technologists and researchers aiming at improving crop production and innovating in 

the food industry. The technology is garnering significant attention from researchers because of its cross-border nature involving 

several fields of science and technologies as summarized in the present review. With the increasing inputs of emerging technologies 

such as artificial intelligence with multiple data processing and models, NIR-HSI is set to revolutionize traditional seed management 

practices for an even greater role in seed viability assessment and food technologies. 
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