ISSN: 2581-8341 Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 IJCSRR @ 2024

Recent Physiotherapy Advances in Stroke Patient for Upper LimbTraining: A Literature Review

Ashwani Kumar¹, Divya Kashyap², Abhishek Kumar Sandilya³, Sakshee Karna⁴, Vishal Verma⁵

¹ Student Researcher, School of Allied Health Sciences Sharda University, Greater Noida

^{2,3} Student Researcher, Department of Physiotherapy, Sardar Bhagwan Singh University, Dehradun

⁴ Student Researcher, School of Allied Health Sciences Sharda University, Greater Noida

⁵ Assistant Professor Department of Physiotherapy, Sardar Bhagwan Singh University, Dehradun

ABSTRACT: Various advanced techniques are used in rehabilitation to improve arm and hand function, which are essential for independent daily life. These techniques include Virtual Reality, Robotic devices, Constraint-Induced Movement Therapy to Mirror Therapy. Telerehabilitation, biofeedback, and wearable sensor methods primarily target neurological impairments such as paresis and spasticity by activating neural circuits or influencing peripheral effectors. However, CIMT, particularly in its modified expression, restrains the non-affected arm and simultaneously trains the affected limb, which is most effective in improving upper limb function. Mirror Therapy, which may also be applied to severely paralyzed limbs, offers several benefits. Nonetheless, newer technologies are costlier and more complicated while simultaneously limiting access, particularly to patients residing at a distance. In this regard, tele-rehabilitation appears to be a functional alternative that uses telecommunication networks, making therapy affordable and accessible.

KEYWORDS: Biofeedback, CIMT, Robotic devices, Mirror therapy, Tele-rehab, Virtual reality.

INTRODUCTION

Stroke is a leading cause of morbidity and mortality worldwide. Activities of daily living and quality of life strongly depend on the upper limb function.[1] The goal of rehabilitation is to recover arm and hand functions and enable patients to perform activities of daily living independently.[2] Stroke can lead to brain damage and loss of motor function. Upper limb function is mainly involved, resulting in disability Various advanced techniques have been developed to facilitate motor recovery of the upper limbs and improve functional ability and quality of life.[3] Technology-based approaches and treatments have been developed for rehabilitation, such as Virtual Reality (VR) and robotic devices, constraint-induced movement therapy (CIMT), mirror therapy, remote rehabilitation, tele-rehabilitation, biofeedback, and wearable sensors, which mostly target neurological impairments such as paresis and spasticity through the activation of neural circuits or by acting on peripheral effectors.[4] The principle of rehabilitation includes a functional approach that targets specific activities and frequent and intense practice and should start in the first few days or a few weeks after stroke.[5] In CIMT, the non-paretic arm is restrained, while the paretic limb undergoes task-based training.[6] It was created primarily to improve upper limb function and is possibly the most researched stroke rehabilitation method. Originally, the CIMT method limited the unaffected upper limb movements with a sling or support cast for 90% of the waking hours for 2 weeks, whereas the affected limb was intensively trained for 5–6 hours per day. In the mCIMT (modified CIMT), the training sessions were less intense and had better tolerance and acceptability.[7]

VIRTUAL REALITY and ROBOTIC DEVICES

Virtual reality is defined by interactive simulations produced by machines to enable people to interact in settings that closely mirror the real world, as opposed to robotic devices, which are machines capable of carrying out a sequence of complex activities automatically. Visual and multisensory feedback were crucial components of this simulation.[4] With the help of several Robotic Devices or VR technologies, a patient can walk more easily by improving muscle powerand motor function in the upper and lower extremities, where ADLs could be more independent. Gait training using these devices is more successful than training without them when combined with traditional physiotherapy.[8] The intensity and quantity of rehabilitative training increased when the robotic and VR technologies were combined.

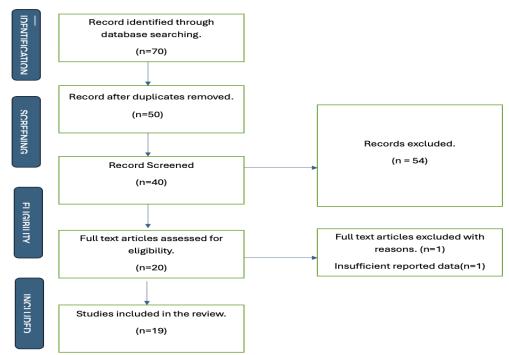
ISSN: 2581-8341

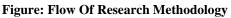
Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 IJCSRR @ 2024

MIRROR THERAPY

Holding a mirror in the patient's midsagittal plane during mirror therapy reflects the motion of the unaffected side as if it were the affected side. For four–eight weeks, it is offered for 15–60 minutes, three–seven times per week. After mirror therapy that persisted for at least six months, a sustained mild-to-moderate-quality improvement in motor function, motor impairment, and ADLs was observed, mostly in the upper limb. However, discomfort and visuospatial neglect showed modest to negligible improvement. One of the benefits of mirror therapy is that it can be used even when the limb is severely or completely paralyzed. [9]

TELEREHAB


Newer rehabilitation technologies are more expensive, complicated, and difficult to access for patients from remote or rural locations. In addition, a lack of finances prevents patients from receiving extensive care and intense treatment at rehabilitation facilities. The provision of rehabilitation services via telecommunication networks and the Internet is referred to as tele-rehabilitation or e-rehabilitation.[10]


BIOFEEDBACK AND WEARABLE SENSORS

Functional evaluation and monitoring therapy conducted in a hospital or clinical setting lacks real-life, personalized situations in a comfortable setting, in addition to being time-consuming and biased. Wearable sensor technology allows home-based therapies to be monitored from a distance and addresses several of these restrictions. Technology has advanced significantly during the past two decades, and inexpensive miniaturized sensors have been developed that allow for objective, long-term observation of a patient's familiar surroundings.[11]

Materials and Methods

The search integrated a variety of sources including journals and computerized searches which were generally performed from the databases of Google Scholar, MEDLINE, PUBMED Central, and Science Direct. Articles in any language using the MeSH terms like Virtual reality, Tele-rehabilitation, virtual reality, and mirror therapy. The search time was limited from 2018 to 2023. Studies like randomized controlled trials, comparative studies, and pilot studies in English languages were included if they described virtual reality-based rehabilitation. All articles were read carefully, and data were extracted from articles based on VR or Tele-rehab.

ISSN: 2581-8341

Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 IJCSRR @ 2024

RESULT

The results obtained from recent studies (*Table 1*) clearly show that virtual reality technology shows a massive improvement in upper-limb stroke rehabilitation compared to other recent advances. Virtual reality therapy can be performed more often than standard supervised physiotherapy sessions. This intervention fulfills the important principles of neurological rehabilitation needed in stroke patients for functional recovery by using goal-oriented tasks, enriched environments, and allowing highrepetition and intensity of therapy. Mirror therapy is another alternative treatment method that shows massive improvement in upper limb rehabilitation in patients with stroke. Studies have shown that the most common application of mirror therapy after stroke is to improve upper extremity function, and survivors do not need any preexisting movements to benefit from this therapy. Biofeedback has shown the least improvement in stroke rehabilitation because studies have shown that it does not improve the range of motion compared to other advances. However, biofeedback produced improvements in the motor power and functional recovery of the patient when compared to standard physiotherapy alone. Constraint-induced movement therapy people often go on to make significant improvements in hand function, which can have a profound effect on independence in everyday activities and quality of life. Wearable sensors track movement using deformable sensors embedded in clothes, allowing monitoring of the patient as they perform activities of daily living.

Sl.	Author	Study	No. of	Treatment applied	Outcome	No. of	Follow up	Result
Ν		Design	patient		measures	Sessions		
0			s					
1.	Norouzi-	RCT	18	Intervention	Fugl-Meyer	two to	3-month	Clinical
	Gheidari et			Group $(n = 9)$,	Assessment-	three	post-	efficacy
	al (2019)			which received	UE (FMA-	times a	interventio	measures
				both traditional	UE), Box	week, 21	n	revealed
				rehabilitation	and Block	minutes		positive
				services and at	test (BBT),	per		advances in the
				least eight	Stroke	session		ADL
				supplement	Impact Scale	being the		assessment;
				sessions of	(SIS), Motor	actual		that is, MAL-
				training with the	Activity Log	duration		QOM and the
				VR exergaming	(MAL)	spent		SIS total score
				system Control		using the		(stroke impac
				Group (n=9)		exergame		scale)
				which received		s, for four		difference
				traditional		weeks		between the
				rehabilitation				intervention
				services only				and control
								group after the
								intervention
2.	Kim et. al	Single	24	The experimental	Manual	five times	52 weeks	Results showed
	(2018)	Blinded		group received	Function Test	per week,		relatively
		RCT		extra training	(MFT),	and thirty		higher scores
				using VR games	Fugl-Meyer	minutes		attained in the
				plus the usual	Assessment	per		SIS and
				rehabilitation and	(FMA),	session for		significant
				the control group	Stroke	12 weeks		improvements
				received the usual	Impact Scale			in ADLs after
					(SIS)			training for

Table 1: Findings of Studies Included in the Review.

ISSN: 2581-8341

Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 IJCSRR @ 2024

3	Llorens et al (2021)	RCT	29	rehabilitation services only The experimental group received combined tDCS and VR-based intervention and conventional physical therapy, respectively.	The Fugl- Meyer Assessment. and Wolf Motor Function Test.	30 minutes a day, for 3- 5 weeks	Post- interventio n	participants in the experimental group. Upper extremity function outcomes were nearly the same in both groups. Improvement of UE motor function was observed throughout all motor measures in the experimental
				control group who received conventional physical therapy based on passive and active assisted ROM exercises only				group but not in the control group. Both groups exhibited similar limited effects after the sensory function assessment was completed.
4.	Qian et al (2019)	Comparativ e Study	30	The Hand group received motor training with NMES-robotic support to the distal finger joints, and the Sleeve group received support to the proximal wrist-elbow joints	Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Modified Ashworth Scale (MAS)	60 minutes	Post- interventio n	Improvement of FMA shoulder/elbow (FMA-SE) and ARAT scores were found in both groups, whereas advancements in FMA wrist/hand (FMA-WH) and MAS scores were only observed in the hand group. A

ISSN: 2581-8341

Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 **IJCSRR @ 2024**

www.ijcsrr.org

								significant decrease in EMG parameters (EMG activation level and CI index) was seen in both groups.
5.	Takebayas hi et al (2022)	RCT	129	Conventional self-training plus conventional therapy (n=42), robotic self- training plus conventional therapy (n=44), and robotic self- training plus constraint- induced movement therapy (n=43).	FMA-UE, MAL, and Coordination scores (Action Research Arm Test Score, Motricity Index, Modified Ashworth Scale) and Stroke Impact Scale	1 hour per session, three times each week for 10 weeks	Post Interventio n	Findings revealed no significant differences in the Fugl-Meyer Assessment for upper- extremity scores between groups. The RT versus control (per-protocol set) improved significantly in the FMA-UE shoulder/ elbow/forearm score. Per- protocol set outcomes suggest that robotic self- training may be effective when combined with conventional therapy.
6	Terranova et al (2021)	RCT	51	Constraint- induced movement Therapy combined with conventional physiotherapy for one group and Robot-Assisted	Wolf Motor Function Test (WMFT) and Fugl-Meyer Assessment —Upper Extremity (FMA-UE) assessed	60 minutes per session for 12 weeks	Post- interventio n	Both training groups showed significant improvement in UE function, and no differences in the statistical outcomes were

ISSN: 2581-8341

Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 IJCSRR @ 2024

				Therapy combined with conventional physiotherapy for another group.	upper limb function and an assessment of ADLs			found. This suggests that robot-assisted therapy is effective for UE stroke rehabilitation
7	Klinkwan et al (2022)	Randomize d controlled trial assessor- blinded control study	20	Neuro restoration protocol	Fugl-Meyer Assessment (FMA) upper extremity score, Brunnstrom recovery stages (BRS), Modified Ashworth Scale (MAS), and Muscle Strength	30–60 min, 20 sessions per cycle, and 2 Cycles each day for 12 weeks	Post- interventio n	This study suggests that 12 12-week program of MT alone accompanied by daily home exercises, is more effective for motor and functional recovery of the upper extremity and ADLs in acute stroke patients than conventional therapy (traditional rehabilitation protocols) if it's started early.
8.	Chinnavan et al (2020)	RCT	25	Both groups received training sessions and conventional therapy, but the experimental group received conventional therapy plus mirror therapy	Fugl-Meyer Assessment (FMA) upper extremity score	Three days per week for 45 minutes.	6 months	Results revealed relatively significant statistical improvement in the experimental group than the control group. Hence, this suggests that when mirror therapy is combined with conventional therapy, it

ISSN: 2581-8341

Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 IJCSRR @ 2024

								produces greater outcomes in UE motor recovery among hemiplegic patients.
9	Bai et al.(2019)	Pilot RCT	34	Movement-based mirror therapy for one Group (MMT) task- based mirror therapy (TMT) for the second group and Conventional Physiotherapy	Fugl-Meyer Assessment (FMA), Wolf Motor Function Test (WMFT), and hand grip strength were used to assess upper limb functions. While the modified Ashworth scale (MAS) and modified Barthel index (MBI		Post- interventio n	The findings of the study showed better outcomes in MMT on improving FMA-UE than in CT and TMT groups. No significant effect in WMFT, hand grip strength, MAS, and MBI was recorded. This study suggests that movement- based mirror therapy (MMT) is more effective than TMT in improving UE functions in stroke rehabilitation.
10	Abdullahi, (2018)	RCT	48	Group A received old/lore therapy only, while Group B was trained with mCIMT, Group C received 300 repetitions of shaping practice, and Group D received 600 repetitions of shaping practice.	Fugl-Meyer Assessment (FMA) was in use to assess UE function while the Motor Activity Log (MAL), Wolf Motor Function	5 times each week for 4 weeks	Post- interventio n	Results found significant improvements in Group B, C, and D upper limb motor function but greater outcomes were observed in Group C and D. This suggests

ISSN: 2581-8341

Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 IJCSRR @ 2024

					Test, and upper limb self-efficacy test			that the number of repetitions of shaping practice notably improves UE motor functionality in stroke rehabilitation.
11	Abba et al (2020)	RCT	60	Constraint- Induced Movement Therapy (CIMT) and Proprioceptive Neuromuscular Facilitation (PNF	Fugl-Meyer assessment (FMA-UE)	three times a week for six weeks	Post- interventio n	Results showed significant improvement in the groups (A & B) after the intervention; nevertheless, CIMT showed better outcomes than PNF. This study suggests that one would rather opt for CIMT as a treatment protocol for UE rehabilitation in chronic stroke patients.
12	Garrido M et al (20023)	RCT	70	Transcranial direct Current Stimulation (tDCS) in combination with modified Constraint- Induced Movement Therapy (mCIMT	FMA-UE, WMFT, and grip strength		Post- interventio n	Findings revealed significant improvements in UE function in both treatments; however, better effects were seen when the active tDCS was combined with mCIMT. This study suggests that combining mCIMT with

ISSN: 2581-8341

Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 IJCSRR @ 2024

								bi-hemispheric trans-cranial Direct Current Stimulation in acute-sub-acute hospitalized stroke patients promotes UE motor function recovery.
	et al. (2019)	Randomize d cross-over pilot trial study	12	Electromyograph ic biofeedback (EMGb) and joint torque biofeedback (Rb)	The modified Ashworth Spasticity Scale	40 minutes per session, and 3 sessions per week	Post- interventio n	The results showed that Lokomat training was advantageous in improving gait rehabilitation in both groups, but EMGb was better in reducing spasticity than Rb. In a nutshell, the study suggested that EMGb is more effective in gait rehabilitation but also Rb is easily acceptable and effective to patients.
14	Najafi et al. 2018	RCT	60	Routine physical exercises, while the case group received biofeedback training	balance, ability to walk, spasticity, and hand muscle strength	20 minutes twice a week for 8 weeks	Post- interventio n	The results showed greater improvement in balance and muscular strength for participants in the intervention group. Finally, this study

ISSN: 2581-8341

Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 IJCSRR @ 2024

							describes biofeedback as a hopeful treatment protocol for improving the motor- muscular situation of patients post- stroke.
15	Yan et al., 2020	RCT	80	Chinese herbal medicine fumigation and myoelectric biofeedback therapy	FMA, The High Coast Shoulder Joint Function Rating Scale		Results showed significant effectiveness in the treatment protocol given to the JIG cluster; FMA scores recorded were notably higher than the ones in the EFG cluster. In conclusion, combining traditional Chinese medicine fumigation and EMG biofeedback therapy is a promising approach for injured players with shoulder- hand syndrome post-stroke because it improves joint function, promotes healing, and relieves pain
16	Cramer et	RCT	124	Arm Motor	Fugl- Meyer	70	The study
	al., 2019			Therapy home-	assessment	minutes	suggests that

ISSN: 2581-8341

Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 IJCSRR @ 2024

				based		for 8	home-based
				telerehabilitation		weeks	
						weeks	telerehabilitatio
				and traditional in-			n is not inferior
				clinic settings.			to traditional in-
							clinic therapy
							and may be as
							effective for
							improving arm
							function and
							promoting
							stroke
							education in
							adults post-
							stroke, and may
							be an accessible
							option for some
							patients.
17	Uswatte et	RCT	24	Telehealth CIMT	Motor	Both	Results showed
	al., 2021			and in-clinic	Activity Log	Groups	that both groups
				CIMT	Arm (MAL)	received	had significant
						35 hours	improvements
						of	in arm function.
						Treatment	Finally, the
							study suggests
							that Tele-
							AutoCITE is
							feasible and
							produces good
							outcomes in
							stroke
							rehabilitation of
							chronic upper-
							arm extremity
							hemiparesis
							patients that are
							similar to those
							attained in in-
							clinic CIMT.
18	Allegue et	2-arm	11	Virtual reality	Fugl-Meyer	30-minute	Results showed
	al., 2020	feasibility		exergames	Assessment-	session for	a significant
	-	clinical trial		combined with a	UE, Motor	5 days a	impact in both
				telerehabilitation	Activity Log,	week for 8	groups as
				app (VirTele)	Stroke	week	measured by
				versus	Impact Scale,		the Fugl-Meyer
				conventional	and		assessment and
				therapy	Treatment		Motor Activity
				·J	Self-		Log. The
					~~~		205. 110

### ISSN: 2581-8341

Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 IJCSRR @ 2024



### www.ijcsrr.org

					Regulation		control group
					Questionnair		was recorded to
					e		have a high SIS
					e		score while the
							experimental
							group showed
							an increase in
							the autonomous
							motivation
							score. In
							conclusion, the
							VirTele
							intervention
							may be as
							effective as
							conventional
							therapy in
							designing a
							rehabilitation
							protocol for
							chronic stroke
							patients.
19	Crema et	RCT	26	Task-driven	Action	27	Findings
							Findings
	al., 2021			NMES grasp	Research	sessions	revealed
	al., 2021			NMES grasp rehabilitation	Research Arm Test	sessions for nine	revealed significant
	al., 2021			NMES grasp rehabilitation with one hour of	Research Arm Test (ARAT), and	sessions	revealed significant improvements
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the	sessions for nine	revealed significant improvements in ARAT scores
	al., 2021			NMES grasp rehabilitation with one hour of	Research Arm Test (ARAT), and the secondary	sessions for nine	revealed significant improvements in ARAT scores from the
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the	sessions for nine	revealed significant improvements in ARAT scores from the experimental
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome measures	sessions for nine	revealed significant improvements in ARAT scores from the experimental group
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome	sessions for nine	revealed significant improvements in ARAT scores from the experimental group compared to the
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome measures were the System	sessions for nine	revealed significant improvements in ARAT scores from the experimental group compared to the control group.
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome measures were the System Usability	sessions for nine	revealed significant improvements in ARAT scores from the experimental group compared to the
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome measures were the System Usability Score (SUS)	sessions for nine	revealed significant improvements in ARAT scores from the experimental group compared to the control group.
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome measures were the System Usability	sessions for nine	revealed significant improvements in ARAT scores from the experimental group compared to the control group. In conclusion,
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome measures were the System Usability Score (SUS)	sessions for nine	revealed significant improvements in ARAT scores from the experimental group compared to the control group. In conclusion, the use of
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome measures were the System Usability Score (SUS) and Total	sessions for nine	revealed significant improvements in ARAT scores from the experimental group compared to the control group. In conclusion, the use of reactive
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome measures were the System Usability Score (SUS) and Total Active	sessions for nine	revealed significant improvements in ARAT scores from the experimental group compared to the control group. In conclusion, the use of reactive exercises with
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome measures were the System Usability Score (SUS) and Total Active Motion	sessions for nine	revealed significant improvements in ARAT scores from the experimental group compared to the control group. In conclusion, the use of reactive exercises with interactive
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome measures were the System Usability Score (SUS) and Total Active Motion (TAM)	sessions for nine	revealed significant improvements in ARAT scores from the experimental group compared to the control group. In conclusion, the use of reactive exercises with interactive objects was
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome measures were the System Usability Score (SUS) and Total Active Motion (TAM)	sessions for nine	revealed significant improvements in ARAT scores from the experimental group compared to the control group. In conclusion, the use of reactive exercises with interactive objects was found to be effective in
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome measures were the System Usability Score (SUS) and Total Active Motion (TAM)	sessions for nine	revealed significant improvements in ARAT scores from the experimental group compared to the control group. In conclusion, the use of reactive exercises with interactive objects was found to be effective in improving hand
	al., 2021			NMES grasp rehabilitation with one hour of conventional	Research Arm Test (ARAT), and the secondary outcome measures were the System Usability Score (SUS) and Total Active Motion (TAM)	sessions for nine	revealed significant improvements in ARAT scores from the experimental group compared to the control group. In conclusion, the use of reactive exercises with interactive objects was found to be effective in

#### DISCUSSION

Recent achievements and developments in physiotherapy for the upper-limb training of stroke patients are extremely multifaceted.

ISSN: 2581-8341 Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 IJCSRR @ 2024



www.ijcsrr.org

Although the most part is extremely promising, there are recurring problems in the domain. Therefore, The synthesized scholarly highlights suggest the following. Among the reviewed interventions, CIMT, mirror therapy, VR training, and robot-assisted therapy are beneficial techniques and do help advance motor recovery and specific movement pattern learning after a stroke. Moreover, many of the techniques imply a specific adjustment to the patient's condition and as many sensations involved as it is humanly possible. Moreover, the technology used in these strategies expanded the horizon of clinical performances and facilitated therapy through VR platforms, as well as telerehabilitation and home-rehabilitation activities with the use of wearable devices. Despite the high potential of these advancements, there are several challenges, including limited access to highly specialized services, the variability in the response to treatment, and the shortfall of support. It is vital to overcome the mentioned challenges and gain a comprehensive understanding of the neurobiological underpinnings of rehabilitation interventions to improve the practice of stroke rehabilitation. In conclusion, by benefiting from recent achievements, physiotherapists can serve stroke survivors through the practical application of interdisciplinary efforts, evidence-based decisions, and patient-centered measures to reach the best functional outcome, independence, and quality of life.

#### CONCLUSION

In this study, different interventions were overlooked for the upper limb in stroke patients, in which Virtual Reality had some optimistic improvements in upper limb function training compared to other methods. However, mirror therapy also resulted in a remarkable improvement in upper limb training in stroke patients. Likewise, other interventions like biofeedback and CIMT had significance in improving the upper limb functioning for acute post-stroke patients.

#### REFERENCES

- 1. Ellepola S, Nadeesha N, Jayawickrama I, Wijesundara A, Karunathilaka N, Jayasekara P. Quality of life and physical activities of daily living among stroke survivors; cross-sectional study. Nurs Open. 2022 May 9;9(3):1635–42.
- 2. Marek K, Redlicka J, Miller E, Zubrycki I. Objectivizing Measures of Post-Stroke Hand Rehabilitation through Multi-Disciplinary Scales. J Clin Med. 2023 Dec 4;12(23):7497.
- Hatem SM, Saussez G, della Faille M, Prist V, Zhang X, Dispa D, et al. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front Hum Neurosci. 2016 Sep 13;10.
- 4. Hernandez A, Bubyr L, Archambault PS, Higgins J, Levin MF, Kairy D. Virtual Reality–Based Rehabilitation as a Feasible and Engaging Tool for the Management of Chronic Poststroke Upper-Extremity Function Recovery: Randomized Controlled Trial. JMIR Serious Games. 2022 Sep 27;10(3):e37506.
- Abba MA, Muhammad AS, Badaru UM, Abdullahi A. Comparative effect of constraint-induced movement therapy and proprioceptive neuromuscular facilitation on upper limb function of chronic stroke survivors. Physiotherapy Quarterly. 2020 Feb 10;28(1):1–5.
- 6. Abdullahi A. Effects of Number of Repetitions and Number of Hours of Shaping Practice during Constraint-Induced Movement Therapy: A Randomized Controlled Trial. Neurol Res Int. 2018 Apr 2;2018:1–9.
- Kwakkel G, Veerbeek JM, van Wegen EEH, Wolf SL. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015 Feb;14(2):224–34.
- 8. Clark WE, Sivan M, O'Connor RJ. Evaluating the use of robotic and virtual reality rehabilitation technologies to improve function in stroke survivors: A narrative review. J Rehabil Assist Technol Eng. 2019 Jan 13;6:205566831986355.
- 9. Thieme H, Morkisch N, Mehrholz J, Pohl M, Behrens J, Borgetto B, et al. Mirror therapy for improving motor function after stroke. Cochrane Database of Systematic Reviews. 2018 Jul 11;2018(7).
- 10. Haleem A, Javaid M, Singh RP, Suman R. Telemedicine for healthcare: Capabilities, features, barriers, and applications. Sensors International. 2021;2:100117.
- 11. Majumder S, Mondal T, Deen M. Wearable Sensors for Remote Health Monitoring. Sensors. 2017 Jan 12;17(12):130.
- 12. Norouzi-Gheidari, N., Archambault, P. S., & Fung, J. Effects of virtual reality training on upper extremity function in stroke patients: a literature review. Journal of Neuroengineering and Rehabilitation, 2019 16(1), 1-24.
- 13. Kim, B. R., Lee, S. D., Shin, J. H., & Yun, M. H. Comparison of virtual reality training and mirror therapy for upper limb

#### ISSN: 2581-8341

Volume 07 Issue 04 April 2024 DOI: 10.47191/ijcsrr/V7-i4-34, Impact Factor: 7.943 IJCSRR @ 2024



function in patients with stroke: A randomized controlled trial. Journal of Neuroengineering and Rehabilitation, 2018 15(1), 1-12.

- 14. Llorens, R., Noé, E., Colomer, C., Alcañiz, M., & Opisso, E. Effectiveness, usability, and cost-benefit of a virtual realitybased telerehabilitation program for balance recovery after stroke: A randomized controlled trial. Archives of physical medicine and rehabilitation, 2021 102(2), 282-291.
- 15. Qian, Y., Liu, K., Niu, X., & Wei, H. Effectiveness of robot-assisted therapy on upper-extremity function in post-stroke patients: A systematic review and meta-analysis. PloS one, 2019 14(8), e0221541.
- Takebayashi, T., Chen, C. L., Chuang, T. Y., Lee, Y. T., & Li, M. L. Efficacy of robotic self-training for upper limb rehabilitation in patients with stroke: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 2022 103(4), 605-613.
- 17. Terranova, C., Loureiro, A. P., & Tedim Cruz, V. Constraint-induced movement therapy versus robot-assisted therapy for upper-limb rehabilitation in stroke: A randomized controlled trial. Journal of Rehabilitation Medicine, 2021 53(2), 1-9.
- 18. Klinkwan, W., et al. Neuro restoration protocol versus conventional therapy for upper limb recovery after acute stroke: A randomized controlled trial. Journal of Stroke and Cerebrovascular Diseases, 2022 31(1), 1-9.
- 19. Chinnavan, E., Tharion, G., & John, A. Effect of mirror therapy on upper extremity motor recovery in stroke patients: A randomized controlled trial. Journal of Neurosciences in Rural Practice, 2020 11(4), 589-595.
- 20. Bai, X., Gu, L., & Tian, J. Effectiveness of movement-based mirror therapy in upper limb motor recovery following stroke: A pilot randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 2019 100(7), 1137-1143.
- Abba, Z., et al. Comparison of Constraint-Induced Movement Therapy and Proprioceptive Neuromuscular Facilitation on Upper Limb Functionality in Chronic Stroke: A Randomized Clinical Trial. Neurorehabilitation and Neural Repair, 2020 34(3), 1-8.
- 22. Garrido, M., et al. Transcranial Direct Current Stimulation Combined With Modified Constraint-Induced Movement Therapy for Upper Limb Rehabilitation in Subacute Stroke: A Randomized Controlled Trial. Neurorehabilitation and Neural Repair, 2023 37(2), 1-9.
- 23. Tamburella, F., et al. Electromyographic biofeedback for gait rehabilitation in post-stroke patients: A randomized crossover pilot trial study. Archives of Physical Medicine and Rehabilitation, 2019 100(6), 1117-1123.
- 24. Najafi, A., et al. The effect of biofeedback training on balance and muscular strength in stroke patients: A randomized controlled trial. Topics in Stroke Rehabilitation, 2018 25(1), 1-7.
- 25. Yan, Z., et al. Efficacy of Chinese herbal medicine fumigation combined with myoelectric biofeedback therapy for shoulder-hand syndrome after stroke: A randomized controlled trial. Chinese Journal of Integrative Medicine, 2020 26(10), 1-7.
- 26. Cramer, S. C., et al. Efficacy of Home-Based Telerehabilitation vs In-Clinic Therapy for Adults After Stroke: A Randomized Clinical Trial. JAMA Neurology, 2019 76(9), 1-8.
- 27. Uswatte, G., et al. Comparison of telehealth and in-clinic constraint-induced movement therapy for patients with chronic upper-extremity hemiparesis: A randomized clinical trial. JAMA Neurology, 2021 78(2), 1-9.
- 28. Allegue, P., et al. Effectiveness of virtual reality exergames combined with a telerehabilitation app in chronic stroke patients: A feasibility two-arm clinical trial. Archives of Physical Medicine and Rehabilitation, 2020 101(11), 1-8.
- 29. Crema, A., et al. Task-driven neuromuscular electrical stimulation therapy for upper-limb recovery after stroke: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 2021 102(8), 1-9.

Cite this Article: Ashwani Kumar, Divya Kashyap, Abhishek Kumar Sandilya, Sakshee Karna, Vishal Verma (2024). Recent Physiotherapy Advances in Stroke Patient for Upper Limb Training: A Literature Review. International Journal of Current Science Research and Review, 7(4), 2301-2314

2314 *Corresponding Author: Abhishek Kumar Sandilya