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ABSTRACT: The escalating global pursuit of sustainable energy solutions has led to the emergence of biomass-derived fuels, such 

as biobriquettes, as feasible substitutes for traditional fossil fuels. Kesambi leaves, which are abundant in Southeast Asia and boast 

a high calorific value, represent a promising prospect for the production of biobriquettes. In this investigation, a conclusive analytical 

method is employed to construct a predictive framework for estimating the Higher Heating Value (HHV) of torrefied kesambi leaf 

biobriquettes. By incorporating ash content (PS), volatile matter (BR), carbon (C), hydrogen (H), and oxygen (O) percentages, 

alongside experimental HHV data, through multiple linear regression and elemental composition data acquired from proximal 

analysis, the model aims to forecast HHV. The model's modest positive Mean Bias Error (MBE) and satisfactory Root Mean Square 

Error (RMSE) suggest a good fit. The substantial R-squared value indicates the model's capability to adeptly capture HHV 

variability. Ultimately, this approach grounded in fundamental principles contributes significantly to the sustainable exploitation of 

biomass resources by providing a pragmatic and effective technique for predicting HHV for kesambi leaf biobriquettes. 
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INTRODUCTION 

The global pursuit of sustainable energy solutions has intensified as concerns over climate change and environmental degradation 

escalate [1], [2], [3]. In this context, biomass-derived fuels have emerged as a promising alternative to fossil fuels, offering renewable 

and environmentally friendly energy sources [4]. Among the various biomass resources, kesambi leaves have garnered attention due 

to their abundance, low cost, and significant calorific value. Utilizing kesambi leaves for the production of biobriquettes presents an 

opportunity to address energy needs while simultaneously reducing waste and promoting sustainable practices. 

Historically, conventional fossil fuels like coal, oil, and natural gas have been the primary sources of energy worldwide. However, 

their widespread use has led to detrimental environmental consequences, such as greenhouse gas emissions, air and water pollution, 

and the worsening of climate change. As a result, there is a growing urgency to transition towards cleaner and more sustainable 

energy alternatives. 

Biomass, originating from organic sources like plants, agricultural leftovers, and forestry remnants, presents a renewable and carbon-

neutral energy reservoir. [5], [6]. Biomass-based fuels, including biobriquettes, have gained prominence as they can be produced 

from a variety of biomass feedstocks, reducing reliance on finite fossil fuel resources. Biobriquettes are compacted biomass 

materials with high energy density, making them suitable for use in various heating and combustion applications. 

Kesambi (Schleichera oleosa) is a tropical tree native to Southeast Asia, particularly prevalent in Indonesia. The leaves of the 

kesambi tree are abundant and often considered as waste material [7]. However, these leaves possess significant energy potential 

due to their high calorific value, making them suitable for conversion into biobriquettes. Employing kesambi leaves for biobriquette 

manufacturing not only aids in waste reduction but also enables the sustainable utilization of valuable energy assets [8]. The high 

heating value (HHV) or calorific value of a fuel denotes the heat liberated upon complete combustion. This parameter significantly 

impacts the efficacy and functionality of biomass-derived fuels such as biobriquettes. Precise estimation of HHV is indispensable 

for refining the production procedure, evaluating fuel quality, and gauging the energy capacity of biomass feedstocks. 

Traditionally, determining the HHV involves expensive and time-intensive laboratory tests, which may not be viable for large-scale 

biomass projects. Hence, the development of predictive models based on biomass elemental composition presents a pragmatic and 

effective solution. These models facilitate swift screening of biomass feedstocks, aiding in material selection for biobriquette 

production and streamlining process optimization. The elemental composition, encompassing carbon (C), hydrogen (H), oxygen 
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(O), nitrogen (N), sulfur (S), and other elements, offers valuable insights into the energy content and combustion properties of 

biomass materials [8], [9].  

One of the most important characteristics in biomass exploitation is its elemental composition. Although the ultimate analysis of 

biomass is an important factor in identifying its energy content and clean and efficient properties, a thorough investigation of the 

material requires highly skilled analysts and expensive equipment [10], [11], [12].  

Predictive techniques for estimating HHV rely on ultimate analysis, which determines the elemental makeup of biomass samples. 

This study will use proximate data from earlier research [13] on kesambi leaf biobriquettes, with ultimate analysis based on the 

Nhuchhen model [14]. The following stage involves analyzing the HHV experimental data of torrefied kesambi leaf biobriquettes 

to create an HHV model based on final predictions. 

In recent years, various statistical and machine learning techniques have been employed to develop predictive models for biomass 

HHV estimation [15], [16], [17], [18]. These models leverage the relationships between elemental composition and calorific value 

to establish robust prediction algorithms [19], [20], [21]. By utilizing large datasets comprising elemental analysis data and 

corresponding HHV measurements, predictive models can be trained and validated to accurately estimate the HHV of biomass 

samples [22], [23]. 

This study aims to contribute to the advancement of biomass energy technology and facilitate the sustainable utilization of kesambi 

leaves for biobriquette production. The development of an ultimate-based model for predicting the HHV of kesambi leaf biobriquettes 

holds significant implications for both research and practical applications. Firstly, it enhances our understanding of the factors 

influencing the energy content of biomass materials and provides valuable insights into their combustion behavior. Secondly, the 

predictive model offers a rapid and cost-effective means of estimating HHV, enabling efficient screening of biomass feedstocks and 

process optimization in biobriquette production. 

 

MATERIALS AND METHODS 

The experimental HHV values shown in Table 1 as well as Ash, VM, and FC data from earlier research [13] are used in this study. 

Table 1. Previous research data from the Ash, VM, FC, and HHV experiments ([13] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on biomass proximate studies, a new correlation for determining elemental composition is presented in this paper based on 

the Nhuchhen models [14]. Based on direct proximate analysis, this newly formed relationship can be utilized to precisely determine 

the elemental composition of biomass, especially for biomass with a high percentage of ash. The main benefit of this correlation is 

Run PS BR Ash  VM FC HHVExp 

 mesh [%] [%] [%] [%] [MJ/kg] 

1 40 3 3.48 13.63 77.5 14.97 

2 60 15 1.75 16.99 73.83 15.79 

3 12 10 3.02 15.06 78.28 14.74 

4 70 10 1.65 15.82 77.86 15.94 

5 20 15 2.54 14.54 77.28 14.64 

6 20 5 3.28 14.61 76.49 15 

7 60 5 2.87 14.2 79.3 15.78 

8 40 10 2.16 15.25 78.58 15.25 

9 40 10 2.14 14.37 79.15 15.45 

10 40 17 2.31 16.11 73.11 15.06 

11 40 10 2.56 14.42 79.37 15.37 

12 40 10 2.84 14.22 78.44 15 

13 40 10 2.12 14.25 77.55 15.65 
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that it can be used to gasification and pyrolysis processes by calculating the elemental components of biomass materials using direct 

proximate analysis. 

The correlation of ultimate analysis from proximate data offers valuable insights into the elemental composition of biomass 

materials, aiding in understanding their energy content and combustion characteristics [14]. By establishing relationships between 

variables such as ash content (PS), volatile matter (BR), carbon (C), hydrogen (H), and oxygen (O) percentages, this correlation 

provides a basis for predicting key parameters like Higher Heating Value (HHV) in biomass-derived fuels. Through statistical 

analysis and modeling techniques, this correlation facilitates the development of predictive models that enable efficient screening 

of biomass feedstocks and optimization of biobriquette production processes.:  

 

𝐶 =  −35.9972 + 0.7698𝑉𝑀 + 1.3269𝐹𝐶 + 0.3250𝐴𝑆𝐻  (1) 

𝐻 =  55.3678 − 0.4830𝑉𝑀 − 0.5319𝐹𝐶 − 0.5600𝐴𝑆𝐻  (2) 

O = 223.6805 − 1.7226𝑉𝑀 − 2.2296𝐹𝐶 − 2.2463𝐴𝑆𝐻 (3) 

Multiple linier regression is used in data analysis to build models (SPSS 20). The following equations are used to verify model 

predictions and experimental data in statistical analysis to determine the model's reliability: average bias error (Eq 4), root mean 

square error (Eq 5), and coefficient of determination (Eq 6): 

MBE =
1

𝑛
∑    (𝑦𝑒𝑥𝑝 − 𝑦𝑝𝑟𝑒𝑑) 

𝑛

𝑖=1

 (4) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑒𝑥𝑝 − 𝑦𝑝𝑟𝑒𝑑)2 

𝑛

𝑖=1

 (5) 

 

𝑅2 = 1 −
∑ (𝑦𝑒𝑥𝑝 − 𝑦𝑝𝑟𝑒𝑑)2𝑛

𝑖=1

∑ (𝑦𝑒𝑥𝑝 − ȳ𝑒𝑥𝑝)2𝑛
𝑖=1 

 (6) 

Where: 

𝑦𝑒𝑥𝑝 =  𝐻𝐻𝑉 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡   

𝑦𝑝𝑟𝑒𝑑 = 𝐻𝐻𝑉 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

ȳ𝑖 =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝐻𝑉𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 

 

RESULT AND DISCUSSION 

The results of data analysis using the Nhuchhen models to determine the elements C, H, and O using proximate analysis data from 

previous research are presented in Table 2. 

 

Table 2. C, H, O Nhuchhen models [14] 

Nhuchhen[14]  HHV Predicted 

C H  Parikh 

55,57 4,88 5,94 30,04 

54,76 4,89 7,65 30,53 

56,72 5,00 6,64 30,96 

56,79 5,03 7,12 31,20 

55,84 4,92 6,45 30,41 

55,37 4,88 6,41 30,20 

56,97 5,00 6,26 30,86 
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56,99 5,03 6,81 31,15 

56,96 5,01 6,41 30,90 

53,91 4,81 7,19 29,89 

57,12 5,02 6,39 30,99 

56,44 4,97 6,27 30,62 

55,89 4,92 6,35 30,36 

 

The resulting equation, which is a model for predicting HHV, is as follows (Eq 7): 

𝐻𝐻𝑉 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =  7,605 + 0,019 𝑥 𝑃𝑆 − 0,017 𝑥 𝐵𝑅 − 0,748 𝑥 𝐶 + 16,215 𝑥 𝐻 − 1,018 𝑥 𝑂  (7) 

The model offered aims to estimate a substance's High Heat Value (HHV) based on multiple predictors, including PS, BR, C, H, and 

O. When any or all of the predictor variables—PS, BR, C, H, and O—are zero, the intercept reflects the expected HHV. In this case, 

the expected HHV is 7.61 in the case when all predictors are absent. The PS Coefficient (0.02) indicates a positive correlation between 

an increase in PS and a predicted HHV. This suggests that the HHV prediction is positively impacted by increasing PS content. BR 

Coefficient (-0.02): A negative coefficient means that the expected HHV will drop as BR rises. This implies that the HHV prediction 

is negatively impacted by higher BR content. The C Coefficient (-0.75) indicates a negative correlation between the expected HHV 

and an increase in carbon content. This suggests that the HHV prediction is negatively impacted by increasing carbon concentration. 

H Coefficient (16.21): A positive coefficient means that the expected HHV rises as the hydrogen level rises. This implies that the 

HHV forecast benefits with a higher hydrogen content. O Coefficient (-1.02): A negative coefficient indicates that the expected HHV 

decreases as the oxygen level rises. This suggests that the HHV prediction is negatively impacted by increasing oxygen content. The 

PS, BR, C, H, and O contents of a material are used by the model to forecast its HHV. While higher BR, C, and O concentrations 

have an adverse effect on the anticipated HHV, higher PS and H contents have a beneficial affect. 

 
Figure 1.  

 

MBE of 0.003: This suggests that, on average, the model tends to slightly overestimate the predicted values compared to the actual 

values. Since the MBE is positive and very close to zero, it indicates a minor tendency for overestimation. The RMSE measures the 

average magnitude of the errors between predicted and actual values. A value of 0.15 indicates that, on average, the difference between 

the predicted and actual values is relatively small. Therefore, the model's predictions are reasonably accurate overall. 

The R-squared value represents the proportion of the variance in the dependent variable (actual values) that is explained by the 

independent variables (predicted values) in the model. An R-squared value of 0.81 indicates that approximately 81% of the variability 
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in the actual values is accounted for by the model. This suggests that the model provides a good fit to the data, meaning it captures a 

significant portion of the variability in the dependent variable. 

 

CONCLUSSION 

Through the development of an ultimate-based model for predicting the Higher Heating Value (HHV) of torrefied kesambi leaf 

biobriquettes, this study represents a significant advancement in biomass energy technology. Utilizing elemental composition and 

experimental HHV data, the model incorporates key factors such as carbon, hydrogen, oxygen, volatile matter, and ash content. 

The model's slight positive Mean Bias Error (MBE) and acceptable Root Mean Square Error (RMSE) demonstrate its effectiveness 

in estimating HHV accurately. Moreover, the robust R-squared value further validates the model's capability to precisely capture 

the variability in HHV. This predictive model facilitates efficient and accurate HHV estimation, expediting biobriquette production 

processes and enabling swift biomass feedstock screening. 

By utilizing kesambi leaves for biobriquette production, this research promotes waste reduction and the sustainable utilization of 

valuable energy resources. It offers a clean and renewable alternative to traditional fossil fuels, ensuring the sustainable exploitation 

of biomass resources. Further validation and refinement of the model could enhance its applicability and encourage broader adoption 

in biomass energy systems, contributing to environmental sustainability and energy security. 
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