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ABSTRACT: We present an aggregation of the causal identifiability solutions techniques and their assumptions as advanced in 

extant literatures with datasets of odd origins, which do not necessarily conform to the independent and identically distributed (i.i.d) 

dataset, multinomial datasets and the Gaussian datasets settings; alongside their concomitant assumptions. The transformation 

process in data generation can sometimes be a desideratum of datasets of the following forms: linear and non-Gaussian, nonlinear 

& non-Gaussian, datasets with missing values, datasets tainted with selection biases, datasets with whose variables forms cycles, 

datasets with heterogeneous/nonstationary variables, datasets with confounding or latent variables, time-series datasets, 

deterministic datasets, etc. The study begins proper in section 2 after the introduction with the basic background into the concept of 

causality with observational data. The concept of graph as an embodiment of the background knowledge with structural causal 

model (SCM) is explicated in section 3; followed by the basic assumptions employed especially with common observational data 

settings in section 4. An exposition into the categorization of the algorithms used in causality is presented in section 4. Section 5 

aggregates and expounds the causal identifiability techniques and their associated assumptions athwart varying datasets; which is 

the crux of the study and a recapitulation of same is presented in table 1. This study’s main contribution is to present an aggregate 

review of the causal techniques and their assumptions across different data settings especially in data settings of odd origins, as 

reviews such as this are grossly lacking in extant literatures. 
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INTRODUCTION 

From time immemorial till date, human actions, processes and indeed scientific explorations have been predicated on the premise 

of cause and effect. In the primordial era, the savaged and primitive man sought ways to articulate and uncover this phenomenon of 

cause and effects; and not having equipment, enough facts or the sine-quo-non to ascertain this phenomenon of knowing what 

actions (causes) that produces the effects especially in incidences that were agonizing to him such as certain ebullitions of some 

sicknesses concomitant with mysterious deaths. Thus, the ability to know the right action to influence his environment or predict 

his future made man an idiosyncratic specie from the rest of the animals. Thus, driving the savaged man from his initial state of 

higgledy-piggledy to embrace the practice of magic, astrology and certain fetish ways to achieve the causation phenomenon in order 

to overcome his bewildered state. Gradually, as societies evolved and advanced, and mankind himself advanced from his primitive 

and savaged state to his current state of scientific and technological advancement. Thus, establishing his hegemony on earth over 

and above every other specie; the same motives of trying to influence his environment and predict his future still stands. Nonetheless 

the methods of achieving it have evolved; as magic arts wanes to scientific logic, and astrology metamorphosed to astronomy and 

other technological innovations such as computer predictions, simulations etc., became the modern genies that are aberrations from 

the fetish ways of predicting the future. Albeit, in this current era, the science of trying to ascertain causality or causation in human 

processes and actions is still a daunting and a nontrivial task; as the traditional scientific way of ascertaining this act is resident with 

the randomized controlled experiment or randomized controlled trial (RCT) method. This RCT method and idea is credited to Fisher 

[1]. Thus, this standard framework for causal discovery known as RCT always involves setting some (usually half) of the sampled 

population of study and given them a treatment (an intervention) under the same conditions, while the second half of the study 

population is left untreated (not intervened on) or controlled under the same or similar conditions, in order to slay any possible 
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confounding or lurking variable, which is often the factor that jeopardizes a proper juxtaposition of these two sampled population 

in the RCT experiments. As fascinating as this method of RCT is, there are events and circumstances that makes this kind of 

experiments too expensive, infeasible or even unethical to perform. A good instance is to perform a RCT on a hypothesize query 

that seeks to uncover the health benefits, or otherwise of smoking on a certain population. This is an unethical experiment to conduct 

under RCT, because it would involve setting half of the population under review to smoke (treated) and the other not to smoke 

(controlled). Hence, with this obstacles posed by RCT, many researchers have resorted to the discovery and inferring of causal 

structures from purely observational dataset, or from a combination of both data and RCT [2, 3]. 

However, in spite of the successes recorded by causal identifiability with observational data especially datasets that are independent 

and identically distributed (i.i.d), a lot of other datasets setting exists that are not generated and contrived from the i.i.d perspective. 

Data settings such as: time-series, deterministic, feedbacks, heterogeneous/nonstationary, missing value, measurement error, 

selection bias etc., that are still obfuscated and painted in shades of grays when it comes to causality in observational data. Hence, 

extensive research works in these areas is a desideratum for a panoramic view of the causal phenomenon in observational datasets.  

1.1 Study Contributions 

The major contribution of this work is to collate and succinctly present from extant literatures the few various solutions advanced 

by researchers in datasets which do not necessarily conform to the independent and identically distributed (i.i.d) dataset, multinomial 

and the Gaussian settings; alongside their concomitant assumptions, i.e.,  datasets of linear and non-Gaussian, nonlinear & non-

Gaussian, datasets with missing values, datasets tainted with selection biases, datasets with whose variables forms cycles, datasets 

with heterogeneous/nonstationary variables, datasets with confounding and latent variables, time-series datasets, deterministic 

datasets, etc. the study of these odd datasets settings when it comes to causal identification with observational dataset will help 

researchers both new and old in this field to have a working understanding of the methods and techniques involved in determining 

causality in these divert dataset settings; as comprehensive reviews on the aggregation of different solutions types for different 

dataset settings as presented in this work is grossly inadequate as far as we can search. 

1.2 Structure and Overview 

In order to paint a clear picture of the study, we try to give a concise but elaborate concept of causal modeling in observational 

studies, by defining the two forms of causality, which are causal discovery and causal inference; and this is presented in section 2 

under the bold heading captured as “Basic concept of causal models. Section 2 also elucidates the two frameworks for executing 

causality in dataset, i.e., the structural causal model (SCM) framework and the potential outcome or Rubin causal model (RCM) 

framework. A comparison of both frameworks is advanced. Section 2 ends with how interventions are done with SCM in 

observational datasets. Since our emphasis is on SCM, a major component of this model is the graph (specially the directed acyclic 

graph – DAG). Thus, section 3 is dedicated to the concept of graph and its concomitant features that makes causal identifiability in 

observational settings possible and plausible. A composition of the causal graph is explicated in this section, followed by the cardinal 

connections that exists in them, which are the collider, the chain/mediator and the fork. A succinct background into the popular 

backdoor adjustment criteria and how causal connections can be ascertained in graph is also presented. The section ends with the 

Bayesian network factorization (BNF), the mathematical parts that connects the probabilities of variables in the graph with their 

parent probabilities and how the causal interventions are done with BNF is also explicated. Section 4 presents the major assumptions 

that drives these DAGs and their accompanying datasets. The Markov condition that connects variables probabilities with their 

parents (conditional) probability is demystified. The causal sufficiency assumption that ensues there are no latent or confounding 

variables is presented; followed by the acyclicity assumption that precludes variables in a graphs from forming cycles is also 

elucidated. Finally, the causal faithfulness assumption that ensues the variables relations in the graph is symmetric with the 

distribution concludes the section.  Section 5 seeks a categorization of the causal algorithms into constraint-based, score-based and 

functional causal model (FCM), in order to identify where each algorithm alongside its dataset setting belongs. Section 6 which is 

the crux of the matter seeks to identify each data setting and the type of algorithm and assumptions advanced to solve causality in 

them. Ten data settings type are identified with each algorithm solution(s) and assumptions accompanying it. Section 7 concludes 

the study with a recapitulation. 
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2 BASIC CONCEPT OF CAUSAL MODELS 

In this section, the various forms of causality are defined, followed by the two major framework used for causality, which are the 

structural causal model (SCM) framework and the potential outcome or Rubin causal model (RCM) framework; with a juxtaposition 

of both frameworks. The section concludes with how causal interventions are executed in dataset with the SCM framework.  

2.1 Causal: Discovery & Inference definitions: Causality can be defined as the process by which one or more independent variables 

(an event, process, object or state) can produce or influence the outcome of one or more variables (usually called a dependent 

variable); that is to say the cause’ wholly or partly is responsible for the effect and the ‘effect’ is partly or wholly dependent on the 

cause [4-6]. It is imperative to note that the concept of causality is indeed broad and diverse, and encompasses different fields and 

disciplines, such as statistics, machine learning, data mining, epidemiology, economics etc. [5, 7]. Causality is divided into two 

main branches. Viz. (i) causal discovery and (ii) causal inference. Causal discovery is defined as the process of extracting or inferring 

causal knowledge, relationship or causal structure from datasets, by analyzing observational data, based on some graphs (Direct 

Acyclic Graph [DAG]) as in the case of SCM and by the use of some statistical tools like the probability distribution and the use of 

structural equations [5, 8]. While causal inference is defined as the process of inferring causality based on some assumptions that a 

particular treatment or intervention was actually the cause of the observed outcome [4, 9] from the causal discovery process in a 

dataset. For example ascertaining from the observation data that the intake of aspirin (intervention or treatment) was the reason for 

stopping the headache (the outcome) on the test subjects from which data was collected [10]. In general, causal models in 

observational studies are designed to mimic the RCT experiment which is the standard framework for carryout causality [11].  In 

spite of the distinction made between causal discovery and causal inference, as explicated and delineated above; in this study, words 

or phrases such as: causality, causation, causal identifiability, casual discovery, shall be interchangeably used to mean both. 

2.2 Causal Model: It is an abstraction of mathematics that describes quantitatively the relations of causality that exist among 

variables in an observable dataset [7]. These mathematical models are derived from the domain and background knowledge 

embodied in the DAG, and they evince  the causal relations within the observable dataset [11-13].  

2.3 Types of causal models: Two types of casual models exists for causality, which are (i) Structural causal model (SCM) proposed 

by Pearl [12] and (ii) Potential outcome framework also called Rubin causal model (RCM) [14, 15].  

2.3.1 An SCM: The framework for causality based on SCM gives a holistic understanding of the theory of cause and effect. It is 

composed of two parts: the causal diagram (or graph) that encodes background domain knowledge and assumptions of the 

distribution (the dataset), and the Bayesian network factorization (BNF) or structural equations part, which models or algorithmised 

(mathematically) the relations among the study variables based on the causal assumptions from the graph [7, 16-18]. This works 

focuses more on the SCM with a more detail explication of the connections of the graphs and the dataset in subsequent sections. 

2.3.2 The potential outcome framework: Causality employ by this framework composed of a pair of variable set (𝑡, 𝑦), where 𝑡 

stands for the treatment and 𝑦 stands for the potential outcome. Formally, the potential outcome is defined as: given a pair of 

variables (𝑡, 𝑦), the potential outcome 𝑡𝑖(𝑦), shows what the outcome would be, if treatment 𝑡 were to be applied in that individual 

variable 𝑖 instance [7, 19]. Hence, this scenario differentiates potential outcome from observed outcome, because not all potential 

outcomes can be observed, but rather all potential outcome have the potentials to be observed [19]. The observed outcome is 

dependent on the value assigned by the treatment. The RCM framework is employed to help articulate and solve the fundamental 

problem of causality, which is missing data [20]. Thus with this framework, only the potential outcome of one individual instance 

can be observed at a time. Hence, we can define the Individual treatment effects (ITE) which translates to the causal impact on the 

individual mathematically as: 𝜏𝑖 =  𝑦𝑖(1) −  𝑦𝑖(0); which means the potential outcome of an individual instance 𝜏𝑖 under two 

varying conditions, i.e., treatment ( 𝑦𝑖(1)) and control  (𝑦𝑖(0)). This can also be extrapolated to Average Treatment Effect (ATE) 

on a certain arbitrary population as the expectation of the ITE of the entire population (𝑖 = 1, 2 … , 𝑛) 𝑎𝑠:  

𝜏 = 𝐸𝑖[𝑦𝑖(1) −  𝑦𝑖(0)] =  
1

𝑛
 ∑ (𝑦𝑖(1) −  𝑦𝑖(0))𝑛

𝑖=1       (1) 

Also, ATE can be taken for a subpopulation of the data that is conditioned on, like in the case of an intervention and it is known as 

the conditional average treatment effects (CATE) [19].The RCM does not necessarily require a graph or DAG. The RCM framework 

is cardinal focus of the work but the rather the SCM with its avalanche exposition of its DAG. 
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In comparison, the SCM and the RCM frameworks are both alike when it comes to the logic and the assumptions that drives them 

[4]. They however differ slightly, as the potential outcome or RCM framework does not explicitly identify or define the casual 

effects of some instrumental variables in the distribution, aside the special variable of treatment; and the knowledge about the 

complete graph structure is not always a desideratum; which is its downside. This downside of the RCM framework is also its 

advantage, as researcher can elect to develop estimators of certain variables and model them in the distribution without necessarily 

considering variables of non-interest. While in the SCM framework, all variables (both observed and unobserved) can be identified, 

studied and modelled by the use of the complete graph (DAG) or others as its relates their connections in the distribution. The pro 

of the SCM is in its detailed approach to causal modeling. This can also be a setback when it comes to the quick and timely 

identification of causality in variables of interests in the distribution, as it would be preferable to use the RCM framework in such 

an instance, instead of a model like the SCM that would necessitate a complete graph structure of the entire variables in the 

distribution. 

2.4 Causal Relations with SCM: Determining the causal relations that exists among variables in an observational study in a purely 

probabilistic distribution is an ambiguous and daunting task. If a conditional probability distribution such as 𝑃(𝑌|𝑋) for instance, 

represent the conditional probability distribution of obesity (𝑌) given a particular level of sugar intake (𝑋). This distribution relation 

is ambiguous in terms of an experimental setting (RCT) where sugar intake was ascertained by randomization or by merely through 

an observational process. In his book on causality, Pearl [12] in order to differentiate the mere conditional observational probability 

distribution (I,e., statistical association/correlation) and interventional conditional probability distribution (which is a causal 

association), introduced the 𝑑𝑜-operator of the do-calculus to differentiate interventional  distribution from observational’. Hence, 

the expression 𝑃(𝑌|𝑋) can now be regarded as mere conditional observational association which depict how the probability of 𝑌 

(obesity) will change, if someone were to observe the sugar intake (𝑋). While 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)) is regarded as the interventional 

conditional probability distribution (which is a causal association), depicting the probability of obesity (𝑌) given that a measure 

unit of sugar (𝑥) were taken (purposefully and not observed). Hence, making the observation and intervention distinct: 

𝑃(𝑌|𝑋 = 𝑥)  ≠ 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)). The practical difference between the two may be the existence of a variable(s) 𝑍 (individual gene 

tar for instance) that may be confounding the relations, which exists in some back-door path: See figure 1 DAG for confounding 

relations. In the intervention distribution, the causal effects is determined given difference values of the treatment/control 𝑋 (i.e., 

when sugar is taken and when sugar is not taken) and this can be measured and compared in the interventional distribution, written 

as: 𝑃(𝑌|𝑑𝑜(𝑥 = 1)), and 𝑃(𝑌|𝑑𝑜(𝑥 = 0)) where 1 and 0 stands for treatment and no treatment (control) respectively for an 

individual instance, which is called the individual treatment effect (ITE). Thus, when this process involves all sampled or all 

instances of the population, the causal intervention is defined in terms of the average treatment effects (ATE) for the instances of 

the population. Written in terms of the expectation as: 𝜏(1,0) = 𝐸[𝑌|𝑑𝑜(𝑥 = 1)] − 𝐸[𝑌|𝑑𝑜(𝑥 = 0)]. Also, conditional average 

treatment effects (CATE) can be taken for subpopulation group in a similar manner as well. Thus, it can be seen that this kinds of 

intervention model’s the RCT experiment that determines causality in observational dataset [21, 22]. In spite of the clear distinction 

describing and differentiating these two processes by Pearl [12], not every dataset can be neatly categorized into this distinction of 

observational and interventional dataset, as some experiments may not clearly or wholly show the value of the variable that is 

intervened on in the dataset. Thus, due to this two distinctions, which are obfuscated in the distributions, it has become imperative 

to represent causal models explicitly in terms of directed acyclic graph (DAG) or simply causal graph as proposed by Pearl [21]. 

Causal graph in SCM are very essential component which make it easier to identify the causality from dataset; hence, we discuss 

them in the next section. 
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Figure 1: Depicts the observational statistical correlational relations distribution (a) and the causal interventional relations (b) 

 

3. CAUSAL GRAPH 

This section presents causal graphs as is applicable in SCM. Fundamental concepts in graph such as the popular backdoor adjustment 

criteria and the Bayesian network factorization (BNF) are elicited and explicated. 

3.1 Causal graph Composition: A causal graph (denoted as 𝐺 = (𝑉, 𝐸), consists of two or more nodes (also called vertices) 

representing a random variable sets (𝑉), 𝑤ℎ𝑒𝑟𝑒 𝑉 = 𝑋1,  𝑋2, 𝑋3, … 𝑋𝑛 and a number of connecting lines among the nodes called 

edges (𝐸). These random variables may include the observed and unobserved (if the exists) variable alongside the treatment and 

outcome variables. In figure 2: 1A is an undirected graph due to the lack of directional arrows on them. While 1B the graph is 

directed because of the arrow direction. And 1C shows a directed graph with a cycle [19] and finally 1D shows and intervention 

graph on variable 𝐶.  A directed edge from 𝐴 to 𝐵 (written as: A → 𝐵) is interpreted as, B is caused by  A or (A is the potential 

cause of B) [7]. Hence, with a causal graph an hypothesized causal query can clearly be modelled through the causal pathways in 

the graph, and all dependent/independent relations as it relates all variables associated with the query are known. And this graph 

model can be factorized using the Bayesian network factorization or the structural equations; based on some assumptions to obtain 

a causal estimand of the conditional probability distribution from which it can be used with the observed dataset to ascertain the 

causal estimate of the hypothesized query [21, 23]. 

 
Figure 2: Shows an undirected, directed, directed with cycle, and intervention graph 

 

A path in the graph is an oriented order of adjacent edges irrespective of the direction of the adjoining nodes. For instance, 𝐴 − 𝐶 −

𝐵 is considered as a path in figure 2 1A and 𝐴 ⟶ 𝐶 ⟵ 𝐵  is also a path in figure 2 1B. A directed path is that in which all edges 

are directed or pointing in the same direction. E.g., the path, 𝐴 ⟶ 𝐶 → 𝐵  in figure 2 1B is regarded as directed. Most causal 

algorithms work best with the directed acyclic graphs (DAGs) condition as shown in figure 2 1B and a few causal algorithms work 

with the cyclic graph condition as shown in figure 2 1C [7, 16-18]. 

3.2 Three Cardinal Relations in Graphs: A descendant of a node 𝐴 is a node 𝐶 ∈ 𝑉, such that there is direct edge from 𝐴 to 𝐶 

(written as: 𝐴 ⟶ 𝐶) in the DAG 𝐺. This corresponds to 𝐴 being an ancestor (parent of) 𝐶. The progenies (𝐴 and 𝐵) of a node 𝐶, 

are the nodes in 𝑉 with a directed edges connecting 𝐶, (designated as: 𝐴 ⟶ 𝐶 ⟵ 𝐵). This child and two parents relationship 

designated as 𝐴 ⟶ 𝐶 ⟵ 𝐵, is also called a collider [5, 9] or immorality [13, 19] is the first basic relation that can exists among 

variables represented in DAG. A second relation exists called a mediator or chain, where a parent node 𝐴 (usually exogenous) that 

produces a child node 𝐶, where 𝐶 in turn produces another child 𝐵 (which is a grand descendant of 𝐴) [13, 21, 23]. finally, a third 

relationship exists where a node 𝐶, which is a single parent having two descendants 𝐴 and 𝐵 (written as: 𝐴 ⟵ 𝐶 ⟶ 𝐵) is called a 

fork or common cause confounder. Thus, these three relations (collider, chain/mediator and fork) are the three common relations 

that exist in an observational dataset and can be mirrored or expressed in a DAG, forming the building block or structure in causal 

graph for determining relationship (causal or associational) in an observational settings [8, 13, 16, 21, 23, 24]. 
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3.3 Causal Connection & the Backdoor Adjustment Criteria in a Graph: D-separation and d-connection are the processes that 

define a sets of variable 𝑉’s connectivity in a causal graph 𝐺 [24]. The 𝐷 in the d-separation and d-connection stands for dependency 

and it is a process of establishing independency or dependency from two or more variables that are independent or otherwise on a 

third variable 𝐶 in in a DAG which is a reflection in the dataset. For instance, in the case of a fork (𝐴 ⟵ 𝐶 ⟶ 𝐵), or a chain/mediator 

(𝐴 ⟶ 𝐶 → 𝐵), the variable 𝐶 is a link between both 𝐴 and 𝐵. Hence, once you condition on the linking variable 𝐶, you will block 

or close the dependency relationship that exist between paths 𝐴 and 𝐵. That is to say, paths 𝐴 and 𝐵 will become independent 

conditioned on 𝐶, written as: 𝐴∐𝐵|𝐶. Albeit the reverse is the case, when it comes to the collider or immorality structure 

 (𝐴 ⟶ 𝐶 ⟵ 𝐵), as the paths A and B are already independent or blocked in their current state (i.e., 𝐴∐𝐵 ∤ 𝐶: 𝐴 is independent of 

𝐵 not conditioned on 𝐶), without the need for conditioning on any variable including 𝐶. Hence, once you condition on 𝐶, a 

relationship between 𝐴 and 𝐵 is induced (i.e., 𝐴 and 𝐵 becomes dependent conditioned on 𝐶. written as:  𝐴 ∐ 𝐵|𝐶). This process of 

blocking the flow of unwanted association on non-causal pathways in order to determine causality only through a causal pathway 

is called the backdoor adjustment criteria [25, 26]. Pearl [24], defined the process of d-separation and d-connection for backdoor 

adjustment criteria in a DAG 𝐺 formally as follows:  A path connecting two variables 𝐴 and 𝐵 is said to be d-separated or blocked 

if and only if: (i) the path contains a fork such as : (𝐴 ⟵ 𝐶 ⟶ 𝐵) or chain/mediator such as: (𝐴 ⟶ 𝐶 → 𝐵) that has been conditioned 

on 𝐶. Written as: (A∐𝐺 B|C), and (ii) the path between 𝐴 and 𝐵 contain a collider on 𝐶, such as (𝐴 ⟶ 𝐶 ⟵ 𝐵)  that has not been 

conditioned on, alongside any descendant of collider 𝐶, that is not conditioned on as well. Written as: (𝐴∐𝐺𝐵 ∤ 𝐶) or just ∐𝐺𝐵 . 

This same process of d-separation and the backdoor adjustment criteria from the graph 𝐺 can be utilized to determine 

dependencies/independencies of variables in the distribution (or dataset), which is a factorization of the d-separation in the graph 

using the Bayesian Network Factorization (BNF). The d-separation in the distribution is written as: A∐𝑝 
B|C, or A∐𝑝 

B|C for 

independency and dependency conditions respectively, similar to the d-separation in the graph with the subscript  P to distinguish it 

from the graph’s d-separation criteria, which is represented by the subscript G. This can further be used to determine causal relations 

in the distribution as whole.  

On the other hand, a path from 𝐴 and 𝐵 through 𝐶, is said to be d-connected, unblocked or open when it is not d-separated [23, 24]. 

3.4 The Bayesian Network Factorization (BNF) in Graphs: The DAGs are interpreted in two part. i.e., the probabilistic and the 

causal interpretations. The probabilistic inference sees the directional arrows on the DAG 𝐺 as showing a probabilistic dependences 

or associations among the variables of study, while the lack of arrows corresponds to the conditional independence asserted by the 

study variables [27]. Based on some assumptions, the simplest being the Markovian condition, which states that each study variable 

is considered independent of all its non-descendants in the graph with the exception of its direct parent. Usually written as 𝐴∐𝐵|𝐶. 

Hence, based on the assumption, the joint probability distribution function 𝑃(𝑣) = 𝑃(𝑣𝑖 , … , 𝑣𝑛) factorizes based on the BNF as: 

𝑃(𝑣) =  ∏ 𝑃(𝑣𝑖|𝑝𝑎𝑖)𝑛
𝑖    (1b) 

Where 𝑣𝑖 = 1, … , 𝑛, 𝑎𝑛𝑑 𝑝𝑎𝑖  denotes the parent of the variable 𝑣𝑖in the graph [7, 24, 27]. 

Thus, based on the BNF of equation (1), the graph in figure 2:1B for instance, the probability distribution of it (i.e.,1B) can be 

factorized and summarized, based on the Markov assumption as follows:  

𝑃(𝐴, 𝐵, 𝐶) =  𝑃(𝐴)𝑃(𝐵|𝐴)𝑃(𝐶|𝐵, 𝐴)𝑃(𝐷|𝐶)   (2) 

This contrasts the normal Bayesian probability distribution network which uses the chain rule without the graph and the Markov 

assumption, written as:  

𝑃(𝐴, 𝐵, 𝐶) =  𝑃(𝐴)𝑃(𝐵|𝐴)𝑃(𝐶|𝐵, 𝐴)𝑃(𝐷|𝐶, 𝐵, 𝐴)    (3) 

The difference in equation (2) and (3) is in the last product conditional probability of 𝐷, where equation (2) reduces the conditioning 

probability to only its immediate parent node 𝐶, based on the position of equation (1) and as captured in the graph of figure 2:1B. 

While equation (3) assumes no graph and factorizes the distribution using the chain rule. Hence, the probability of 𝐷, given (or 

conditioned on:) 𝐶, 𝐵 and 𝐴 are used as elicited in equation (3). 

3.5 Causal Identifiability with BNF Intervention Graphs: The second interpretation of the graph is called a causal interpretation. 

In this scenario, the arrows direction in the DAG 𝐺 represents the influence of causality among the variables. Here the BNF of 

equation (1) above is still essential, but the arrows are assumed to evince a separate process in the data generated. Hence, after 

eliciting causal path from the DAG 𝐺, the conditional probability of the distribution   𝑃(𝑣𝑖|𝑝𝑎𝑖) which is generated based on the 
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graph 𝐺, and which is a statistical estimand, can be estimated from the data. The relations of conditional dependency expressed by 

the BNF formula of equation (1) does not necessarily leads to causal inference (due to the mixtures of confounding variables 

sometimes). However equation (1) can be extended to cater for interventions (which are causal in their implementation) as presented 

by Pearl in [12]. Using the do-operator of the do-calculus as an intervention on the desired variable (or node) the difference between 

mere conditional distribution (correction), written as: 𝑃(𝑌|𝑋 = 𝑥), and the causal intervention of the conditional distribution, written 

as: 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)),  in the graph and subsequently the data can be clearly distinguished. For instance, if the graph in figure 2, were 

derived from the query hypothesis of determining the effects of shoe size 𝑋 on the reading ability 𝑌 of children. The age variable 𝑍, 

confounds the relationship between reading ability 𝑌 and shoe size 𝑋, making them to have statistical correlation as shown in figure 

1(a). But when you carry out an intervention on the shoe size 𝑋 such as 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)), the age variable 𝑍 that confounds the 

relations is severed, and the conditional probability of the BNF produces an estimand which is given as 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)) =

𝑃(𝑍)𝑃(𝑋|𝑍)𝑃(𝑌|𝑍, 𝑋) . Which is summarized by getting rid of the factor for probability of 𝑋 in the BNF to get: 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)) =

∑ 𝑃(𝑌|𝑍, 𝑋)𝑧 𝑃(𝑍). With this causal intervention estimand, using the d-separation and the backdoor criteria, the shoe size 𝑋 will be 

set to a treatment unit of 1 and no treatment (control) unit of 0, while conditioning on a certain age 𝑍 say 8years. Thus, the difference 

between the treatment and no treatment of shoe size (𝑋: 0,1) generated from conditioning on a certain age (𝑍 = 8 ) for the set of 𝒁 

variable in the dataset can be calculated as the ATE, given mathematically in terms of their expectation as:  𝜏(1,0) =

𝐸[𝑌|𝑑𝑜(𝑥 = 1)] − 𝐸[𝑌|𝑑𝑜(𝑥 = 0)], which translate to the causal estimate or causal inference estimation on the effect of shoe size 

𝑋 on reading ability 𝑌 in children. This estimate would likely be zero (no effect), thus killing the lurking variable (age) and exposing 

the spurious association (correlation) that exists between shoe size 𝑋 and reading ability 𝑌. Note however that if the confounding 

variable 𝑍 is unobserved or not part of the distribution (the dataset), the causal identification of 𝑋 on 𝑌 cannot be feasible to obtain 

in the data, even though it is revealed in the graph. This do-operator which translate to intervention and causality in data differentiates 

mere association (correlation) that is used in machine learning algorithms.  

With SCM, counterfactual hypothesized queries which are carried out on an individual level of the sampled dataset can also be 

estimated, using some techniques proposed by Pearl [10, 28] which transcend the do-operator of the do-calculus, which only work 

with i.i.d condition [29]. Although counterfactual causal effects would not be covered in this work. 

 

4. MAJOR ASSUMPTIONS IN SCM 

This section covers the four major assumptions often used for causality, especially with i.i.d datasets, thus driving the process of 

causality in observational data setting with the SCM framework. These assumptions are: (i) The Markov assumption, (ii) The 

Acyclicity assumption (iii) The Faithfulness assumption, (iv) The causal sufficiency assumption. These assumptions are summarized 

as follows: 

4.1 The Markov assumption: This assumption states that, a parent node in a DAG 𝐺 representing a variable is considered 

independent of all its non-descendant in the graph with the exception of its direct parent. This assumption ensures that causal 

estimand for the identification of the causal relations is generated from the graph to the data, using the BNF or the structural equation 

of functional causal model (FCM). This estimand which is modeled using the Markov condition when it is sufficient (i.e., all 

confounding variable identified), becomes the basis for which the probability distribution, which is a statistical estimand can be 

estimated from the dataset. Equation (1) is a representation of the Markov condition. The Markov assumption when combined with 

the causal edge assumption that states that: in a DAG 𝐺, all adjacent nodes are dependent; can generally be referred to as the 

minimality assumption [15, 19, 30].  

4.2 The acyclicity assumption: It is the phenomenon that ensures that the set of adjoining variables nodes 𝑽 in the causal graph 

does not form a cycle, a feedback loop or go back in time as shown in figure 2:1C, but are rather directed and acyclic as shown in 

figure 2:1B [31, 32].  

4.3 The faithfulness assumption: This assumption is the opposite or converse of the Markov assumption. While the Markov 

assumption works from a given causal graph to the dataset by modelling the causal estimand from the graph and implementing same 

in the probability distribution 𝑃(𝑉); the faithfulness assumption utilizes a principle that seek to identify a causal graph and its 
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associate casual estimands from a given dataset [19, 33]. That is, it seeks to move from condition probability distribution (in the 

dataset) such as: A∐𝑃 B|C to a DAG conditional probability structure such as: A∐𝐺B|C. The faithfulness assumption states that, if 

a variable 𝐴 is independent of 𝐵, conditioned on 𝐶 in a probability distribution in the dataset 𝑃(𝐴, 𝐵, 𝐶), written as A∐𝑃 B|C, then 

the variable 𝐴 would be d-separated from 𝐵 conditioned on 𝐶 in the causal graph 𝐺 as well, written as: A∐ 𝐺B|C. The assumption 

of faithfulness as regards the identification of causality in observational data is considered one of the simplest assumption and the 

violation of this assumption is pretty much a common phenomenon; as conditions and connections that doesn’t show dependencies 

are enough to violate this assumption. For instance, as shown in figure 3, if the effects of two causals paths in a graph 𝐺 cancels out 

themselves completely. I.e., 𝐴 ⟶ 𝐶 → 𝐷 𝑎𝑛𝑑 𝐴 ⟶ 𝐵 → 𝐷; then the independent of the causal variables in the graph will remain 

stable. i.e., 𝐴 and 𝐷 becomes independent or d-separated from each other, written as: 𝐴∐𝐷 [34].  

4.4 the causal sufficient assumption: This condition states that in a given causal graph 𝐺, there are no variables confounding 

relationships that is unobserved among the study variables. That is to say, the causal sufficiency assumption ensures that all variables 

that may be confounding or having a hidden effect on the hypothesized query variable of treatment and outcome (𝑡, 𝑦) are identified 

and explicitly shown on the graph, whether or not they are observed in the distribution of the dataset [35-37]. Hence, these four 

assumptions are the building blocks for causal discoveries in observational studies in constrain-based (CB) and the score-based 

causal identifiability techniques, with an i.i.d. distribution. However, other assumptions exist aside these ones, that are used in the 

FCM model settings and some datasets which are not i.i.d structured, and we will identify and explicate them in the relevant headings 

that they appear. 

 
Figure 3: Showing an instance where the faithfulness assumption may be violated 

 

5. CATEGORIES OF CAUSAL ALGORITHMS 

In this section a clear exposition into the classes or categories of the standard algorithms developed for learning causal relations in 

dataset is presented and elucidated based on these three classes. Viz. (i) Constraint-based (CB), (ii) Score-based (SB) and (iii) 

Functional-based models.  

5.1 Constraint-based (CB) Algorithm: It employs the statistical BNF approach, by using the Markov equivalent condition (MEC), 

the faithfulness assumption, the causal sufficiency assumption and the acyclicity (a DAG), which provides the causal graphs based 

on the conditional independencies of the set of variables found in the data distribution; by carrying out some hypothesis tests using 

statistical methods in order to identify the causality. Some techniques identified for the implementation of the conditional 

independent test are the G2 test [38, 39], and the Z-test approach, proposed by Fisher [40]. A famous example of a CB algorithm 

that operates on the four assumptions that constitute the algorithm is the Peter-Clark Algorithm (PC-algorithm for short). This 

algorithm is effective and consistent with datasets that are i.i.d, with a Gaussian or multinomial distribution; which are employed 

for generating the causal graph [24, 39, 41, 42]. Other forms of the constraint-based algorithms that exist are the Inductive Causation 

algorithm (IC-algorithm) [43] and their variations [36, 44]. Other families of algorithms that seek to overcome the restriction of the 

normal and multinomial distribution are covered in these references [7, 45-47]. Other CB algorithm such as the fast causal inference 

(FCI) and its variants [48, 49], are developed to cater for the issue of unobserved confounding in the causal graph, by dropping the 

causal sufficiency assumption. Also, other CB causal discovery algorithms such as the Cyclic Causal Discovery (CCD) algorithm 

are developed to cater for the feedback loop for variables that violates the acyclicity assumption [50]. Furthermore, another CB-

algorithm called the SAT-based algorithm, was developed and it drops the faithfulness and the acyclicity assumptions [51].  

5.2 Score-based (SB) Algorithms:  It is similar to the CB-algorithm in terms of graph formation through the BNF, albeit it drops 

the faithfulness assumption and uses the goodness-of-fit method as a test instead of the conditional independence test method. The 

set of candidate graphs produced from the variable set 𝑉 in the distribution, are each represented with a structural equation and are 

also allocated an important score by the algorithm via some measure of adjustment scores. The Bayesian information criteria (BIC) 
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scores method [52] is mostly used and widely adopted. The BIC scores is employed to determine how well the dataset fits the DAG 

structure, while at the same time attempting to correct the complexity of the DAG that does not fit the data [53]. Allocating scores 

to all possible graphs in the distribution is infeasible and computational expensive. Hence, heuristic approach such as the greedy 

equivalence search (GES) [54] algorithm and its variant, the Fast greedy equivalence search (F-GES) [55] are employed to attain 

the desired graph optimization within the local context. 

Some hybrid algorithm that seeks to combine the techniques of the CB and the SB algorithms exists and are gaining traction [56, 

57]. Algorithm such as the Max-Min Hill-Climbing (MMHC) algorithm [57] is employed to scale-up variables set in their thousands, 

which overcome the computational constraint of SB approach, which cannot scale-up such magnitude of variables set. This 

algorithm is configured to first learn MEC skeleton of the DAG by employing an algorithm called the MMPC (Max-Min Parent and 

Child) [56], which is a technique used in CB algorithm. The edges are afterwards oriented using a SB technique called the Bayesian 

scoring hill climbing search (BS-HCS). A hybrid modification of the GES algorithm is developed [58] and is called AR-GES and 

its search space is dependent on the conditional independent graph estimation. Also, adaptive changes in the AR-GES search space 

is dependent on the present state the algorithm is at, and this modification is imperative for general consistency of the algorithm. 

5.3 Functional Causal Model (FCM) Algorithms: Causal models are sometime built on the assumption of a set of semi-parametric 

structural equations, called functional causal models (FCM), which can also be generated from the graph and the causal effects 

which are indicated by the arrow head edges can be computed and quantified using structural equations. Similar to the SB, a variable 

in FCM can be depicted mathematically as a function of its direct cause or parent 𝑃𝑎𝑖  and some disturbance or noise term 𝜖𝑌. Written 

as: 𝑌 = 𝑓(𝑋, 𝜖𝑦 ). For instance, in the graph of figure 2 :1B, the structural equations that expresses the causal relations can be given 

as 𝐴 = 𝑓(𝜖𝐴), 𝐵 = 𝑓(𝐴, 𝜖𝐵), 𝐶 = 𝑓(𝐴, 𝐵, 𝜖𝐶), 𝐷 = 𝑓(𝐶, 𝜖𝐷).  where 𝜖𝐴, 𝜖𝐵, 𝜖𝐶,𝜖𝐷 depict the noise or disturbance terms for each 

function respectively. Although all the noise terms are usually implicit and are not shown in the graph. Thus, with the FCM, the 

assumption of causal faithfulness is not required, albeit the Markov, sufficiency and acyclicity remained valid and essential 

assumptions. FCM are able to differentiate DAGs that share the same MEC. With the assumptions employed in FCM, the DAG 

configuration from data that is produced from a mechanism that is linear but with non-Gaussian noise can be recovered with a causal 

model called the Linear non-Gaussian Model (LinGaM) [59]. Also, the ICA-LinGaM model exist which estimates the model 

coefficient by the use of the independent component analysis (ICA) technique for signal analysis [60]. However, the issue with ICA-

LinGaM is that ICA algorithms converges easily to a local prime; hence, a DirectLinGaM algorithm [61] is proposed to overcome 

the challenge and guarantee a global optimum. Similarly, with a nonlinear data generated structure, the additive noise model (ANM) 

assumption [62, 63] is proposed for the variables and the noise distribution. With this ANM condition, the identification of the true 

causal graph is guaranteed, as there is no backward causal model with ANM for a nonlinear structure in the non-causal direction 

[13]. Also, a post-nonlinear (PNL) model for non-LinGaM is proposed to handle the functional space increase amongst the variables 

and the noise term [64]. FCM such as ICA-LinGaM auto-regression are also adjusted and adapted for causal identification in time-

series dataset [65]. Other FCM are adapted to handle cycles or feedback loop by dropping the acyclicity assumption [66], while 

other are adapted to cater for hidden or confounding variables [67] by dropping the causal sufficiency assumption. 

 

6. CAUSAL IDENTIFIABILITY TECHNIQUES IN DIFFERENT DATA SETTINGS 

In this section, we elicit and discuss the different models employed for causal discovery in different data settings, cutting across the 

three classes of causal models discussed in section 5, which are the CB, SB and the FCM algorithms. The section identifies and 

elucidates 10 data types settings, alongside the assumptions that drives the process; which most cases are a deviation from the i.i.d, 

the Gaussian or multinomial structures which works best on the four major assumptions enumerated in section 4. These includes: 

6.1 Linear Non-Gaussian Settings:  Causal discovery and identifiability in a dataset of bivariate distribution of random variables 

such as (𝑥, 𝑦) in a linear and Gaussian setting, is difficult to determine. It does not suffice to tell whether 𝑥 is the cause of 𝑦 or vice-

visa (i.e., 𝑥 ⟶ 𝑦: called the forward model or 𝑦 is the cause of 𝑥, 𝑥 ⟵ 𝑦: called the backward model) from the SCM using the 

MEC assumption and the concomitant assumptions of acyclicy and causal sufficiency; as the symmetric relations and Markov 

conditions holds in both directions. The Non-parametric structural equations models (NPSEM) generated from both the forward and 

backward SCMs are given as: 𝑦 = 𝑓𝑦(𝑥, 𝜀𝑦), where 𝜀𝑦 denote the noise term in the 𝑓𝑦 function and the variable 𝑥 is independent of 
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the noise term. Written as:  𝑥 ∐ 𝜀𝑦 in the forward model: 𝑥 ⟶ 𝑦 and the backward model is given as  𝑥 = 𝑓𝑥(𝑦, 𝜀𝑥), where 𝜀𝑥 also 

denote the noise term in the function 𝑓𝑥 and the variable 𝑦 is independent of the noise term. Written as:  𝑦 ∐ 𝜀𝑥 in the backward 

model: 𝑥 ⟵ 𝑦. If you carry out a parametric linear regression for the two random variables, using the noise as an additive term for 

the forward and backward models, and using the regression equations: 𝑦 = 𝑎𝑥 + 𝜀𝑦 and 𝑥 = 𝑎𝑦 + 𝜀𝑥 respectively; and by plotting 

the predictor (effects) and its cause alongside the cause and each noise (the residuals) term, the relationships that would ensue, 

would make it impossible for causal identifiability in both cases for a bivariate linear Gaussian distribution [13, 19, 21].  

Albeit to overcome this issue, some assumptions about the parametric form will suffice. Hence, it would suffice to assume that the 

structural equations of the bivariate distribution are linear, non-Gaussian and acyclicity assumptions [59, 62, 68] aside the MEC 

condition (not requiring the faithfulness and sufficiency assumptions). Thus, with these assumptions, the causal identifiability of 

the bivariate distribution’ real-valued would become feasible. The structural equation that generate the data is assumed to take the 

form: 𝑦 = 𝑓(𝑥) +  𝜀 where the function 𝑓 is said to be linear and 𝑥∐ 𝜀 (𝑥 is independent of 𝜀) while 𝜀 is said to be a distribution of 

non-Gaussian. And all these are based on the Theorem of Shimizu et al.,[59]. Accordingly, there does not exist an SCM in the 

backward model or direction such that: 𝑥 = 𝑓(𝑦) +  𝜉 and where 𝑦∐𝜉 that can generate data consistent with the same bivariate 

random distribution 𝑝(𝑥, 𝑦). As a matter of fact, when you fit a regression model in the opposite direction using equation = 𝑓(𝑦) +

 𝜉 , you will realized that the variable 𝑦 is dependent on the noise (residuals) 𝜉 : (𝑦 ∐ 𝜉: 𝑦 is dependent on 𝜉 ).  Thus, the production 

of a causal asymmetry between the two variables 𝑥 and 𝑦, based on the theorem of [59], which is non-Gaussian assumption is only 

in the forward model and not the converse or backward direction, and the general proof of this concept is elicited and explicated in 

this reference [59]. In fact, in any such distribution when any one of the causal variable 𝑥 and the noise term 𝜀 are Gaussian, it is 

possible to identify the causal direction, due to a theory by Hyvärinen et al.,[60, 69] called Independent component analysis (ICA) 

or more directly as a result of the Darmois-Skitovich theorem [70]. This method is broadly known as Linear non-Gaussian Model 

(LinGaM) [59]. Several extension of the LinGaM model exists. For instance, Shimizu et al.[59] employed the multivariate 

distribution apart from the bivariate form in their work. Hoyer et al.,[62] included the causal sufficiency assumption in their work 

to help handle confounders and latent variables; while Lacerda et al.,[71] and S-Romero et al., [72] works permitted graphs with 

cycle or feedbacks under other assumptions, thus, violating or dropping the assumption of acyclicity in order to uncover causal 

knowledge in the dataset model of LinGaM. Also, studies that demonstrates the process of generating data, which satisfies the 

LinGaM proposition but the actual models are termed Post-nonlinear (PNL) due to the fact that the real data were inverted through 

a nonlinear concept and process exists in this references [64, 73]. 

6.2 Nonlinear Additive Noise Dataset Setting: During the process of data generation, a nonlinear process is something involved at 

the end transformation phase. Thus, causal identifiability of such a data setting, should be able to consider the functional class of 

such nonlinear process in order to bring about causal identifiability in the random variable distribution of such nature. Hoyer et 

al.[62] and Mooij et al.,[74] have suggested a direct extrapolation of the LinGaM model for the nonlinear setting by expressing the 

effect 𝑌 as a nonlinear function of the cause (or parent variable) 𝑋 and an additive noise or an independent error term 𝜀. Written 

as:  𝑌 = 𝑓𝑦(𝑋) + 𝜀𝑦, where the causal variable   𝑋 ∐ 𝜀𝑦 (𝑋 is independent of the noise term 𝜀𝑦), while 𝑓𝑦 is a non-linear function.  

Thus, in this case, the causal identifiability of the dataset become easy to determine as there is no backward model in the nonlinear 

case where a similar function such as:   𝑋 = 𝑓𝑥(𝑌) + 𝜀𝑥 that exist in the backward direction (𝑋 ⟵ 𝑌), but only in the forward (𝑋 ⟶

𝑌). Albeit in the nonlinear case,  the assumptions of acyclicity and the Markov conditions, holds true alongside the additive noise 

assumption [21]. The PNL functions also exists in the additive noise setting, where the function 𝑓𝑦 is superimposed with another 

function 𝑔𝑦 to get ride of the noise term. Given as: 𝑌 = 𝑔𝑦(𝑓𝑦(𝑋) + 𝜀𝑦) in order to bring about causal identifiability as explicated 

and proofed in works of [64, 73]. 

6.3 Time-series Causality Issue: The collection of data on a single event by the observance of a sequence of changes multiple times 

on an item of data indexed with time order is called a time-series data [5]. Time-series observational dataset can be univariate 

(involving one variable) or multivariate (involving two or more variables), which may take different forms such as discrete, binary, 

continuous, text form etc. Causal search in time-series observation data is no doubt a daunting task, albeit there is an exponential 

escalation in the causal discovery and identifiability in time-series observational data recently by researchers. Many techniques are 

designed specifically for solving tasks involving causal discovery in sequential or time-series observational data. A popular 
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framework known as Ganger causality, that was proposed by Ganger [75] exist for this purpose. Mathematically, this framework 

model can be expressed as an auto-regression task such as: 𝑌 =  ∑ 𝑎𝑖𝑌𝑡−𝑖
𝑛
𝑖=1 + ∑ 𝑏𝑖𝑋𝑡−𝑖

𝑛
𝑖=1 + 𝜖𝑡    where 𝑛 is the order of the model 

or the maximum number of lags to be employed and 𝑎𝑖 and 𝑏𝑖 are the coefficients of  𝑌 and 𝑋 respectively, and they contribute to 

the delay in observations of the variables in the framework. The coefficients 𝑏𝑖 of the Ganger causal variable in particular are 

considered to be statistically significant. Intuitively, the Ganger Variable 𝑋 Causes 𝑌 if the prediction of 𝑌 is based on the previous 

observations, and the previous observation of 𝑋 does better in performance than the prediction of 𝑌 occasioned by its previous 

performance only [5]. Other less similar methods of causal identifiability techniques in time-series data includes: The Windows 

approach: which is an adaption of the FCI algorithm for time-series data, and it is known formally as Time-series-FCI (Ts-FCI), 

proposed by Entner & Hoyer [76]. It involves partitioning the data into disjoint windows, and measuring each unit as a distinction 

analytic unit. Also another strategy called “Timestamp” involves the handling of measurements at different times setting as 

independent and separate timestamp from each other. The algorithm used is called the PC-MCI (Peter Clark, Momentary Conditional 

Independence) algorithm and it was proposed by Runge et al.,[77]. Furthermore, this algorithm is a graphical method designed to 

handle linear and nonlinear time-series observational datasets. The PC-MCI algorithm is a two-phased algorithm (i.e., PC1 and 

MCI) with each phase representing conditional independence of different timestamp. In the PC1 phase, it employs the conditional 

independence technique of the PC skeleton structure to discovery possible variables that have dependent relations in each and every 

timestamp, both current and previous. In the next phase which is the MCI, the algorithm employs the momentary conditional 

independence as suggestive of the abbreviation MCI as a test to ascertain the causal relations amongst the variables in each 

timestamp. Extensions of the PCMCI algorithm exists, for instance the PCMCI+ proposed by Runge [78] for handling of concurrent 

links within timestamp. I.e., a causal relations that exist amongst variables within the same timestamp [5]. Also another extension 

called the LPCMCI which was proposed by Gerhardus & Runge [79], is designed for handling of latent variables in time-series 

observational data. Albeit all these methods of causal discovery in time-series data as discussed above are not without their 

downsides. The Granger and the Timestamp methods have the issue of not having all units of measurements independent of each 

other (although most are). While the windows technique most times excludes relations athwart from the partition of windows and 

this may concomitantly affect result across each window size selection [8]. Causal assumption associated with time-series dataset 

include; Markov condition, faithfulness, ancestral graphs assumption with their extensions (dynamic, partial, maximum etc.,)[80]. 

6.4 Deterministic Data setting: Causal identifiability in a deterministic bivariate dataset, where the dataset does not contain noise 

exist. The mathematical model for a deterministic case is given as: 𝑌 = 𝑓𝑦(𝑋). Hence, since there is no noise term 𝜀𝑦 in the dataset, 

the technique of using the independence between the additive noise term 𝜀𝑦 alongside the cause variable 𝑋 written as: (𝑋∐𝜀𝑦) to 

determine the causal direction in the datasets would not be applicable. Albeit Janzing et al.[81], proposed a method for deterministic 

cases, where the transformation function 𝑓𝑦 and the causal variable’s marginal distribution 𝑃𝑥 can be exploited, based on some 

contrived perspective assumption known as information-geometric condition, aside the Markov and causal sufficiency, to describe 

the causal asymmetry in order to ascertain the causal direction in the dataset.  

6.5 Heterogeneous and Nonstationary Datasets: Heterogeneous and nonstationary dataset are those sets of datasets where the 

process of generating the dataset is not uniform or identical, but rather changes across the dataset over time [8]. In cases such as 

these, even if the parameters and other mechanism vary but the qualitative domain knowledge which forms the causal structure is 

fixed, the causal discovery process may be feasible even if there is a shift in the distribution; as distribution shifts and causal 

modeling are closely related. Inspired by this distribution shift and nonstationary datasets, Huang et al.,[82] proposed a method 

called the Nonstationary Driving Force Estimation (NoDFEs), a Kernel Embedding (KE) technique [83]. While Zhang et al., [84] 

proposed frameworks called Constraint-based causal Discovery from Nonstationary/heterogeneous Data (CD-NOD), for these kinds 

of dataset. Both frameworks by [82] and [84] have capacities to do the following: (i) detects changes in the mechanism of the 

distribution, (ii) estimate causal skeletons in the distribution, (iii) identify the causal directions in the distribution and (iv) estimate 

the driving force behind nonstationary dataset. The causal assumptions employed in these frameworks includes; the Markov 

condition, a kind of pseudo- sufficiency, faithfulness, acyclicity and other assumptions that considers the independent changes in 

changing modules of the variables. 
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6.6 Missing Data Challenge: Datasets are sometimes plagued with the issue of missing values in the variables distribution. This 

issue is common and ubiquitous in virtually all domains. Thus with this predicament, it is futile to apply existing causal techniques 

to ascertain the causal structure in the dataset as the end result would be error bound; as the conditional (in)dependencies from such 

a dataset with the missing values is likely to generate a different causal structure from the same dataset without missing values. A 

proposition to mitigate or overcome the issue of missing data is given by Tu et al.,[85] where they employed the modified version 

of the PC algorithm called missing values PC (MVPC) to determine the causal direction in such a dataset. The MVPC algorithm 

considered dataset that were either: missing at random (MAR), missing completely at random (MCAR), and missing not at random 

(MNAR). Thus, the output of this technique may not always guarantee accuracy, albeit it is said to be asymptotically accurate based 

on the following assumptions: non-causality in missing-ness, Markov, faithfulness, causal sufficiency for confounding and selection 

bias assumption and other sundry assumptions [85]. 

6.7 Measurement Errors Issue: Causal discovery output can greatly be tainted by the presence of measurement errors and thus, 

make useless the causal technique employed in such a process. These measurement errors occur as a result of the instruments or 

proxies employed in the process of measurement. Since this issue has become ubiquitous, a great deal of attention has been given 

to it with little success. Albeit a recent study by Zhang et al.,[86] has shown that under sufficient conditions (sets of assumptions 

related to the Markov condition, causal sufficiency, linearity, and the non-deterministic faithfulness condition and others), the causal 

structure or direction in the measurement error prone dataset that is partially or completely free of the measurement errors with 

undetermined variance can be generated. The measurement error causal algorithm which they called, causal model with 

measurement error (CAMME) is expressed mathematically as: 𝑋 = 𝑋̂ + 𝜀. Where 𝑋 is a set of observed variables, and 𝑋̂ is a set of 

variables that are free of measurement-noise, and 𝜀 is the measurement errors set. It is assumed that 𝜀 is independent of  𝑋̂: (𝜀 ∐𝑋̂), 

and 𝑋̂ possess a variance of non-zero. With this study carving a niche in the measurement error scenario, it is hoped that it will spur 

researchers to build on the work and come up with better approaches of causal discovery in regards to the issue of measurement 

error. 

6.8 Data Selection Bias Issue: when the data is selected in such a way that during the statistical analysis process, it become difficult 

to achieve a proper randomization of data sample obtained, which also translate to indicate that the sampled data does not reflect 

the true population of the study. When this happened, the sampled dataset is said to suffer a selection bias or selection effect [87, 

88]. It is sometime referred simply as the distortion in the statistical analysis process which is an outcome of the data collection 

process[89, 90]. Selection bias can taint the statistical and causal significance of a study and thus, falsify the outcome. However, a 

proposition by Zhang et al., [91] designed two FCM algorithms for a bivariate dataset with selection bias. The first one is based on 

the post nonlinear model which they called post nonlinear for outcome-dependent selection bias (PNL-OSB) and the second model 

was built using the additive nonlinear model with the same outcome-dependent selection bias which they called (ANM-OSB) for 

bivariate dataset, for causal identifiability and causal direction ascertainment in outcome-dependent selection bias dataset. 

Assumption used in the study are similar to the assumptions in the LinGaM and PNL frameworks apart from the outcome-dependent 

assumption. However, in spite of their specific approach on this issue, a more general approach regarding selection bias in datasets 

still needs to be studied. 

6.9 Data setting with Confounding and Latent Variables: Causal discovery or inference in a dataset that is beclouded with 

confounding, latent, hidden or unmeasured variables can pose a major challenge to causal identifiability in such as dataset setting. 

In the case where there are latent or unmeasured confounding variable, the effects of these latent variables can be felt by the 

observable variables during the process of causal identifiability. Many causal techniques have been developed to overcome this 

confounding and latent variable issue. In the case of measured confounding variables in an i.i.d data, the causal identifiability can 

easily be determined by using the do-operator of the do-calculus as an intervention operation and the d-separation criteria proposed 

by Pearl [22, 92], under the Markov, sufficiency acyclicity and causal faithfulness assumptions, alongside algorithms such as the 

PC etc. However, if the latent variables are unmeasured or unobserved, then the sufficiency assumption is dropped, while the rest 

assumption holds sway. By using the causal identifiability techniques captured in the Fast Causal Inference (FCI) algorithm [39, 

49] and its variants (RFCI, FCI+) [48, 93], the issue of latent and unmeasured variables are handled and the causal direction in such 

datasets are determined. 
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6.10 Datasets with Cycles or Feedback Setting: Virtually all the aforementioned challenges of causal discovery or inference 

discussed above are based on the full acyclicity or partial acyclicity conditions in the datasets. Dataset with variables having 

feedbacks or cycle is not a common phenomenon at all in the literature of causal community especially in computer science and 

statistics, albeit there exists important feedback tasks and applications in the social science and other disciplines like the laws of 

demand and supply in economics [94, 95] that involves graph with cycles. A number of causal techniques exists in extant literatures 

that tackles variables that form cycles or feedback in a sampled dataset. Prominent amongst them is the Cyclic Causal Discovery 

(CCD) algorithm proposed by Thomas [49]. This algorithm is applicable in dataset with variables with cycles but without latent 

variables. The CCD algorithms uses the partial ancestral graph (PAG) as output to describe a MEC of maximum ancestral graph 

(MAG) to determine the causal direction in the sampled dataset. However, there is a limitation of the CCD algorithm in most cases, 

the PAG that describe the data would not fit well on the dataset. A recent framework from Forri & Mooij [96] called modular 

structural causal model (mSCM) that handles dataset with cycles, latent variables and nonlinear structures exist. Their work 

introduces a set of mixed graphs which they called sigma connection graph (σ-CG) alongside other additional structure, with a 

concept called the sigma separation (σ-separation), which is an extrapolation and adaptation of the d-separation criteria to determine 

causal direction in nonlinear datasets with cycles and latent variables. A similar technique for handling causality in dataset with 

cycles, latent variables and selection bias (CLS) called Cycles Causal Inference (CCI), proposed by Strobl, [97] is also available in 

extant literature. This framework represents the cyclic graph involved in the causal process as a non-recursive linear structural 

equation model that has independent error terms. Empirical evidence shows that the CCI algorithm seems to outperform the CCD, 

FCI and RFCI algorithms regarding datasets with cycles [97]. Other approaches which adapts the LinGaM model of additive noise 

for causal discovery in cycles exists in this reference [98-100]. Table 1 below presented an aggregated summary of the data types 

settings with the algorithms, and assumptions employed alongside the authors pioneering them. 

 

Table 1. A Summary of the different data types settings, with the algorithms employed alongside the assumptions and the authors 

of such initiatives 

S/No. Data Type Setting Causal Algorithm 

Employed 

Assumption(s) Author(s) 

1. Linear Non-Gaussian LinGaM and its extensions 

e.g., PNL 

Markov, linearity, non-

Gaussianity, acyclicity 

and (sufficiency only 

with author [67]) 

[59],[67] [60, 

69] , [70], 

[64, 73] 

2. Nonlinear with Additive Noise Nonlinear LinGaM and its 

extensions e.g., PNL 

Markov, acyclicity, 

nonlinearity additive 

noise 

[62], [74], 

[64, 73] 

3. Time series Ganger Auto-regression, 

Ts-FCI,  PCMCI (and its 

extensions; PCMCI+ 

LPCMCI) 

Markov, faithfulness, 

ancestral graphs  

[65],[75], 

[76], [77], 

[78], [79] 

4. Deterministic Data FCM or LinGaM without 

noise 

Markov, sufficiency  and 

information-geometric 

[81] 

5. Heterogeneous/Nonstationary NoDFE, KE,  Markov, sufficiency 

(pseudo), faithfulness, 

acyclicity and 

independent changes in 

changing modules 

[82], [83], 

[84] 

https://doi.org/10.47191/ijcsrr/V6-i11-10
http://sjifactor.com/passport.php?id=20515
http://www.ijcsrr.org/


International Journal of Current Science Research and Review 

ISSN: 2581-8341    

Volume 06 Issue 11 November 2023    

DOI: 10.47191/ijcsrr/V6-i11-10, Impact Factor: 6.789 

IJCSRR @ 2023  

 

 

7067  *Corresponding Author: Gabriel Terna Ayem                                           Volume 06 Issue 11 November 2023 

               Available at: www.ijcsrr.org 

                                              Page No. 7054-7072 

6. Missing Data MVPC  Markov, faithfulness, 

sufficiency for 

confounding and  

selection bias, non-

causality in missing-ness 

and others. 

[85] 

7. Measurement Errors CAMME Markov, sufficiency, 

linearity, puny acyclicity, 

non-deterministic 

faithfulness, and other 

sundry conditions 

[86] 

8. Selection Bias PNL-OSB, ANM-OSB Markov, sufficiency, 

linearity, non-

Gaussianity, acyclicity, 

linearity additive noise, 

and outcome-dependent  

[91] 

9. Confounding and Latent Variables PC, FCI, RFCI, FCI+ Markov, sufficiency 

(dropped with the FCIs), 

acyclicity, and 

faithfulness 

[22, 92], [39, 

49], [48, 93] 

10. Cycles or feedback data CCD, mSCM, CCI, 

LinGaM 

Markov, Cyclic, 

sufficiency (dropped with 

the FCIs), (non)linearity, 

Additive noise, and 

faithfulness 

[49], [66], 

[96], [97], 

[98-100] 

 

7. CONCLUSION 

Having a good working knowing of causation is crucial and germane, as it helps man to articulate and predict his environment and 

also impact it positively; knowing the appropriate intervention to execute and the expected positive outcome from it, and avoiding 

experiments or interventions that are inimical and concomitant with negative consequences or outcome. Causality may not be a 

piece of cake that can easily be devour even with the evolution of modern scientific and advanced technological techniques, as the 

standard procedure for it is still the RCT, credit to Fisher [1], which involving separating the study population into treated and 

controlled groups in order to avoid any confounding issues with the study population, that may negate the outcome of the experiment. 

Hence, with this method, situations often arise when the RCT method becomes unethical, infeasible or too expensive to perform. 

Plagued with these anomalies and inadequacies, researchers have resorted to the study of causality in observational data settings. 

With the huge successes recorded in causality in observational settings especially with i.i.d, datasets that are mostly multinomial 

and Gaussian in nature that utilizes assumptions such as the Markov condition, causal sufficiency, faithfulness and acyclicity 

assumptions abound in extant literatures. However, various data settings exist which do not confirm to the general standard of i.i.d. 

and the normal distribution. Different data types settings such as; linear and non-Gaussian, Nonlinear & non-Gaussian, datasets with 

missing values, datasets beclouded with selection bias, datasets with cycles variables, datasets with heterogeneous/nonstationary 

variables, datasets with confounding or latent variables, time-series datasets etc., exists but are given little attention by researchers 

of causality in observational settings. Thus, this study aggregates the solutions techniques and the different assumptions advanced 
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for the aforementioned data types, in order to present researchers in observational data causality with a basic understanding of how 

causality techniques are performed and identified across these types of datasets, with the view to opening understanding and 

encourage new and innovative works in this areas.  
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