
International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

Solving A ML Problem Using The Grossone

ABSTRACT

Machine learning (ML) has grown at a remarkable rate, becoming one of the most popular research directions. It is widely applied

in various fields, such as machine translation, speech recognition, image recognition, recommendation system, etc. Optimization

problems lie at the heart of most machine learning approaches. So, the essence of most ML algorithms is to build an optimization

model and learn the parameters in the objective function from the given data. A series of effective optimization methods were put

forward, in order to promote the development of ML. They have improved the performance and efficiency of ML methods. The

aim of this paper is to show that, among many other fields, the grossone may be used successfully in the ML. The grossone, the

infinite unit of measure, has been proposed by Professor Y. Sergeyev in a number of noticeable works, as the number of elements

of the set, N, of natural numbers. It is expressed by the numeral ①. This new computational methodology would allow one to

work with infinite and infinitesimal quantities in the ―same way‖ as that working with finite numbers More details about it are

given in Section 4. We analyze the SVM from the viewpoint of mathematical programming, solving a numerical example using

the grossone. The Iris dataset was chosen for the implementation of the support vector method. This is a wellknown set of data

used in the area of ML.

KEYWORDS: ML, grossone, optimization, SVM, linear classifier, hyperplane.

INTRODUCTION

In an informal sense, ML is the task of building a model for some quantity (or function) that we would like to predict, or in other

words, learn. The model is usually built from a set of ―training‖ data for which the corresponding quantity of interest is known.

Later, the obtained model is used to predict on new or unknown data, where we will then evaluate the performance of the obtained

model. Until now, this task description spectacularly mirrors classical regression, which is not a coincidence. Concrete practical

examples of such ML questions include classifying handwritten characters, reconstructing radio signals from very noisy sources,

detecting a disease from MRI brain images, recommending movies or other products depending on personal ratings given to other

items, ranking websites in a search engine based on their text content, modeling the terrain from the data from the sensor of an

autonomous car, and predicting climate parameters or stock prices based on historical data, as well as many other applications. A

learning algorithm tries to learn a function given a set of data. Generally, given more data, a learning algorithm should ideally

learn the function better. In other words, its performance should improve after looking at more data. One of the important class of

learning algorithms is the class of Supervised learning algorithms. For supervised learning, given training data (sample inputs and

outputs of the function on those inputs), our task is to learn the function. Without any assumptions on the type of function, it is

hard to learn the function. In almost all cases, we assume that the function belongs to a class of functions (linear, quadratic etc.)

and hence is specified by some parameters. So, the problem translates to estimating the parameters, given a set of training data.

Overall, the main steps of ML are to build a model hypothesis, define the objective function, and solve the maximum or minimum

of the objective function to determine the parameters of the model. In these three vital steps, the first two steps are the modeling

problems of ML, and the third step is to solve the desired model by optimization methods. There are now many flavors of

mathematical programs: linear, quadratic, semi-definite, semiinfinite, integer, nonlinear, goal, geometric, fractional, etc. For

example, linear programs have a linear objective and linear constraints. Linear programming is not a programming language like

C++, Java, or Visual Basic. Linear programming can be defined as:

 ―A mathematical method to allocate scarce resources to competing activities in an optimal manner when the problem can be

expressed using a linear objective function and linear inequality constraints.‖

Linear programming is a special case of mathematical programming (mathematical optimization). Now linear programming is a

subset of ML known as supervised learning. In a supervised learning, the system knows the patterns and the pattern is well

defined based on previous data and information. A more complete description of these problems can be obtained from the

mathematical programming glossary (www.cudenver.edu/∼hgreenbe/glossary/) and the NEOS optimization guide (www-

fp.mcs.anl.gov/otc/Guide/). Each flavor of mathematical programming is a different research area in itself with extensive theory

and algorithms. In the sequel we give some definitions which will be used in the paper.

University ―Eqrem Cabej‖, Gjirokaster, Albania

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

Dr. Jollanda Shara

1226 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

csrr.org

Definitions:

1. A separating hyperplane is any hyperplane that classifies perfectly the training data.

2. The margin 𝜌 of a separating hyperplane is the distance from the hyperplane to the closest 𝑥𝑖 .

 𝜌 𝑤, 𝑏 = 𝑚𝑖𝑛
 𝑤𝑇𝑥+𝑏

 𝑤
 (1)

3. The optimal separating hyperplane is the separating hyperplane whose margin is maximal.

 𝑤∗, 𝑏∗ = arg max 𝜌 𝑤, 𝑏 (2)

1. ML&OPTIMIZATION

Almost all ML algorithms can be formulated as an optimization problem to find the extremum of an objective function. Building

models and constructing reasonable objective functions are the first step in ML methods. With the determined objective function,

appropriate numerical or analytical optimization methods are usually used to solve the optimization problem.

According to the modeling purpose and the problem to be solved, ML algorithms can be divided into supervised learning, semi-

supervised learning, unsupervised learning, and reinforcement learning. Particularly, supervised learning is further divided into the

classification problem (e.g., sentence classification [4], image classification [5], etc.) and regression problem; unsupervised

learning is divided into clustering and dimension reduction [6], among others. For example, the optimization problems in

supervised learning have one of the following general form:

The goal is to find an optimal mapping function 𝑓(𝑥) to minimize the loss function of the training samples,

min𝜃
1

𝑁
 𝐿 𝑦𝑖 , 𝑓 𝑥𝑖 , 𝜃 𝑁

𝑖=1 (3)

where 𝑁 is the number of training samples, 𝜃 is the parameter of the mapping function, 𝑥𝑖 is the feature vector of the ith samples,

𝑦𝑖 is the corresponding label, and 𝐿 is the loss function.

There are many kinds of loss functions in supervised learning, such as the square of Euclidean distance, crossentropy, contrast

loss, hinge loss, information gain and so on. For regression problems, the simplest way is using the square of Euclidean distance

as the loss function, that is, minimizing square errors on training samples. But the generalization performance of this kind of

empirical loss is not necessarily good. Another typical form is structured risk minimization, whose representative method is the

support vector machine. On the objective function, regularization items are usually added to alleviate overfitting, e.g., in terms of

𝐿2 norm,

min𝜃
1

𝑁
 𝐿 𝑦𝑖 , 𝑓 𝑥𝑖 , 𝜃 + 𝜆 𝜃 2

2𝑁
𝑖=1 (4)

where 𝜆 is the compromise parameter, which can be determined through cross-validation.

We observe that the relationship between available mathematical programming models and ML models has been increasingly

combined. The adaptation of mathematical programming models and algorithms has helped ML research advance. Researchers in

neural networks went from backpropagation in (Rummelhart et al., 1986) to exploring the use of various unconstrained nonlinear

programming techniques such as discussed in (Bishop, 1996). The fact that backpropagation worked well in turn stimulated

mathematical programmers to work on stochastic gradient descent to better understand its properties, as in (Mangasarian and

Solodov, 1994). With the advent of kernel methods (Cortes and Vapnik, 1995), mathematical programming terms such as

quadratic program, Lagrange multipliers and duality are now very familiar to competent ML students. ML researchers are

designing novel models and methods to exploit more branches of the mathematical programming tree with a special emphasis on

constrained convex optimization. The special topic reflects the diversity of mathematical programming models being employed in

ML. We see how recent advances in mathematical programming have allowed rich new sets of ML models to be explored without

initial worries about the underlying algorithm. In turn, ML has motivated advances in mathematical programming: the

optimization problems arising from large scale ML and data mining far exceed the size of the problem typically reported in the

mathematical programming literature. The interplay of optimization and ML is complicated by the fact that ML mixes modeling

and methods. In that matter, ML is much like operations research (OR). Mathematical programming/optimization is historically a

subfield of OR. OR is concerned with modeling a system. Mathematical programming is concerned with analyzing and solving

the model. Both OR and ML analysts address real world problems by formulating a model, deriving the core optimization

problem, and using mathematical programming to solve it. According to (Radin, 1998) an OR analyst must trade off tractability –

―the degree to which the model admits convenient analysis‖ and validity – ―the degree to which inferences drawn from the model

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

1227 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

Available at:

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

hold for real systems‖. So at a high level the OR and ML analysts face the same validity and tractability dilemmas and it is not

surprising that both can exploit the same optimization toolbox. (see [2])

2. LINEAR CLASSIFIERS

Linear classification is a useful tool in ML and data mining. In contrast to nonlinear classifiers such as kernel methods, which map

data to a higher dimensional space, linear classifiers directly work on data in the original input space. While linear classifiers fail

to handle some inseparable data, they may be sufficient for data in a rich dimensional space. For example, linear classifiers have

shown to give competitive performances on document data with nonlinear classifiers. An important advantage of linear

classification is that training and testing procedures are much more efficient. Therefore, linear classification can be very useful for

some large-scale applications. Recently, the research on linear classification has been a very active topic. (see [7])

The classification problem is sometimes called supervised learning, because the method operates under supervision [8]. The goal

of the supervised learning is to derive a mapping (function) which not only can correctly describe the data in the training set, but

more importantly it is able to generalize from the training set to the unobserved situations.

Since the main application of the classifier models is the prediction, the generalization ability of the learning algorithms are

without doubt the most important property that distinguishes a good classifier from the bad one. [9]

The function derived from the supervised learning introduces a border between two classes – we say it forms a decision

boundary or decision surface.

Depending on the shape of this decision boundary we distinguish linear classifiers and non-linear classifiers. The linear classifiers

represent a wide family of algorithms, whose common characteristic is that the decision is based on the linear combination of the

input variables [10]. Logistic regression and Support vector machines, can be regarded as members of this wide family.

So, to put it simple, in linear classification, we seek to divide the two classes by a linear separator in the feature space. If 𝑝 = 2,

the separator is a line, if 𝑝 = 3 it's a plane, and in general it's a (𝑝 − 1)- dimensional hyper-plane in a 𝑝-dimensional space.

Fisher in his classic paper [11] introduced his linear discriminant, which was probably the first linear classifier. The Iris Data set

[12], published in the same paper to exhibit the power of his linear discriminant, became eventually the most cited classification

data set, used widely for educational and explanation purposes. It demonstrates a simple example of the binary classification

problem with 2 explanatory variables and 100 observations. The goal of the classification is to draw a line that could serve as a

borderline between the two different classes. Since the data are clearly linearly separable, it does not appear to be much a

challenging task. (see [19])

If we want to write a function which does linear classification, it would look something like this:

classify.linear = function(x,w,b) {

distance.from.plane = function(z,w,b) { sum(z*w) + b }

distances = apply(x, 1, distance.from.plane)

return(ifelse(distances < 0, -1, +1))

}

3. LINEAR REGRESSION, PERCEPTRON AND SVM

For convenience, assume that 𝑌 ∈ {−1, +1}.

A linear classifier has the form

 𝑓 𝑥 = 𝑠𝑖𝑔𝑛{𝑤𝑇𝑥 + 𝑏} (5)

where 𝑤 ∈ 𝑅𝑑 , 𝑏 ∈ 𝑅.

In addition to be very useful as a result of their own ability, linear classifiers are at the heart of many discrimination rules, such as

SVM, decision trees and neural networks. Approaches to linear classification are numerous. In fact, a study of linear classifiers

shows that they are widely used in the most of various algorithms and principles of supervised learning.

3.1. LINEAR REGRESSION

In regression, we observe 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1, 2, … , 𝑛 where 𝑥𝑖 ∈ 𝑅𝑑 , 𝑦𝑖 ∈ 𝑅. It is assumed that

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

1228 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

https://svm.michalhaltuf.cz/bibliography#witten2011data
https://svm.michalhaltuf.cz/bibliography#hamel2011knowledge
https://svm.michalhaltuf.cz/bibliography#rao2012emotion
https://svm.michalhaltuf.cz/bibliography#fisher1936use
https://svm.michalhaltuf.cz/bibliography#fisheriris

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

 𝑌 = 𝑕 𝑋 + 𝜖 (6)

where 𝑕 is a deterministic function and 𝜖 is zero-mean noise. The goal is to estimate the regression function

𝑕 𝑥 = 𝐸{𝑌|𝑋 = 𝑥} (7)

In linear regression, it is assumed that

𝑕 𝑥 = 𝑤𝑇𝑥 + 𝑏 (8)

To apply linear regression to classification, we treat the labels 𝑦𝑖 ∈ {−1, 1} as the response variables in a regression problem. In

fact, we are interested only in the final decision

𝑠𝑖𝑔𝑛{𝑤𝑇𝑥 + 𝑏} (9)

The standard approach of linear regression is to minimize the squared error

 [𝑦𝑖 − (𝑤𝑇𝑥𝑖 + 𝑏)]2 (10)

Writing it in matrix notation as follows

𝒚 =

𝑦1

⋮
𝑦𝑛

 , 𝒘 =

𝑏
𝑤1

⋮
𝑤𝑑

 , 𝑿 =

1 𝑥11
… 𝑥1𝑑

1 𝑥21 … 𝑥2𝑑

⋮
1 𝑥𝑛1 … 𝑥𝑛𝑑

 (11)

we seek 𝒘 minimizing

 𝒚 − 𝑿𝒘 2 (12)

Hence,

𝒘 = (𝑿𝑇𝑿)−1𝑿𝑇𝒚 (13)

Recall that, a separating hyperplane is any hyperplane that classifies perfectly the training data.

Assume that such a hyperplane exists. The problem is to find one.

Some geometry:

Let 𝑧 ∈ 𝑅𝑑 and let 𝑤, 𝑏 define a hyperplane. Let us find the distance of 𝑧 from the hyperplane {𝑥 ∈ 𝑅𝑑 : 𝑤𝑇𝑥 + 𝑏 = 0}.

We can write

𝑧 = 𝑧0 + 𝑟
𝑤

 𝑤
 (14)

where 𝑤𝑇𝑧0 + 𝑏 = 0 and 𝑟 may be negative. Then,

𝑤𝑇𝑧 + 𝑏 = 𝑤𝑇𝑧0 + 𝑤𝑇 𝑟
𝑤

 𝑤
 + 𝑏 = 𝑤𝑇 𝑟

𝑤

 𝑤
 (15)

Now, it is clear that

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

1229 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

𝑟 =
𝑤𝑇𝑧+𝑏

 𝑤
 (16)

which is the socalled ―signed distance‖.

3.2. ROSENBLATT’S PERCEPTRON.

The Perceptron algorithm was invented by Frank Rosenblatt in 1958. The algorithm has a bit of a feed-back quality: it starts with

an initial guess as to the separating plane's parameters, and then updates that guess when it makes mistakes. Without loss of

generality, we can take the initial guesses to be 𝑤 = 0, 𝑏 = 0.

perceptron = function(x, y, learning.rate=1) {

 w = vector(length = ncol(x)) # Initialize the parameters

 b = 0

 k = 0 # Keep track of how many mistakes we make

 R = max(euclidean.norm(x))

 made.mistake = TRUE # Initialized so we enter the while loop

 while (made.mistake) {

 made.mistake=FALSE # Presume that everything's OK

 for (i in 1:nrow(x)) {

 if (y[i] != classify.linear(x[,i],w,b)) {

 w <- w + learning.rate * y[i]*x[,i]

 b <- b + learning.rate * y[i]*R^2

 k <- k+1

 made.mistake=TRUE # Doesn't matter if already set to TRUE previously

 }

 }

 }

 return(w=w,b=b,mistakes.made=k)

}

The perceptron learning algorithm seeks to minimize the total distance of misclassified points from the decision boundary.

Assume that the classes are labeled +1 and −1. Hence, 𝑥𝑖 is misclassified iff the condition

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) < 0 (17)

is satisfied. Denote by 𝑀 the set of misclassified points. Then, the total (unsigned) distance of misclassified points from the

decision boundary is proportional with

𝐷 𝑤, 𝑏 = − 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏)𝑖∈𝑀 (18)

The perceptron learning algorithm minimizes 𝐷 𝑤, 𝑏 using the stochastic gradient descent.

The gradient of 𝐷 𝑤, 𝑏 is given by

𝜕𝐷

𝜕𝑤
= − 𝑦𝑖𝑥𝑖𝑖∈𝑀 (19)

𝜕𝐷

𝜕𝑏
= − 𝑦𝑖𝑖∈𝑀 (20)

Instead of stepping in the opposite direction of the gradient, we visit each point of 𝑀 in some random order and update the

hyperplane in each step, as follows:

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

1230 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

 𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 + 𝛾𝑦𝑖𝑥𝑖 (21)

 𝑏𝑛𝑒𝑤 = 𝑏𝑜𝑙𝑑 + 𝛾𝑦𝑖 (22)

where 𝛾 > 0 is the learning rate.

Notice that:

 If the data is linearly separable, then a separating hyperplane is obtained after a finite number of steps.

 This finite number can be large, especially when the gap between classes is small.

 The final solution depends on the initialization.

 If the data are not separable, the algorithm will not converge.

Other gradient descent methods

Hypothetically, we would like to select 𝑤, 𝑏 to minimize the training error

1

𝑛
 𝐼{𝑦𝑖 𝑤

𝑇𝑥𝑖+𝑏 <0}
𝑛
𝑖=1 (23)

Unfortunately, the function 𝐼{𝑡<0} is not differentiable. The basic idea is to replace 𝐼{𝑡<0} by a function 𝜑(𝑡) that has qualitatively

similar properties with 𝐼{𝑡<0} but is differentiable or convex. Then we can minimize

1

𝑛
 𝜑 𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 𝑛
𝑖=1 (24)

by gradient descent.

The function 𝜑(𝑡) is called loss function.

As we know, a linear program has the form:

min
u

𝑐𝑇𝑢

 𝑠. 𝑡. 𝐴𝑢 ≤ 𝑎 (25)

where 𝑢 ∈ 𝑅𝑝 , 𝑐 ∈ 𝑅𝑝 , 𝐴 ∈ 𝑅𝑞×𝑝 , 𝑎 ∈ 𝑅𝑞 .

It turns out that we can compute a separating hyperplane using linear programming. We can follow these steps.

First, as we saw above the perceptron criterion is

𝐷 𝑤, 𝑏 = − 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏)𝑖∈𝑀 (26)

and we may write

𝐷 𝑤, 𝑏 =
1

𝑛
 𝜑 𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 𝑛
𝑖=1 (27)

where 𝜑 𝑡 = max −𝑡, 0 .

This is optimized by solving:

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

1231 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

min
w,b,ξ

1

𝑛
 𝜉𝑖

𝑛

𝑖=1

𝑠. 𝑡. 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ −𝜉𝑖

 𝜉𝑖 ≥ 0 (28)

which is a linear program. But, it can be noticed that in this program 𝑤 = 0, 𝑏 = 0, 𝜉 = 0 is a trivial solution and this is not a

useful hyperplane. The constraint 𝑤 ≠ 0 is difficult to be included directly into a linear program. So, we’ll proceed as follows:

If 𝑥1 , 𝑦1 , … , 𝑥𝑛 , 𝑦𝑛 are linearly separable, then

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 > 0, ∀𝑖 (29)

for some 𝑤, 𝑏.

By rescaling 𝑤, 𝑏, a separating hyperplane satisfies:

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖 (30)

The idea now is to minimize the sum of violations of this constraint:

min
w,b,ξ

1

𝑛
 𝜉𝑖

𝑛

𝑖=1

𝑠. 𝑡. 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖

 𝜉𝑖 ≥ 0 (31)

Let 𝑤∗, 𝑏∗, 𝜉∗ be the optimal solution. The linear program enjoys these properties:

 A separating hyperplane exists iff 𝜉𝑖
𝑛
𝑖=1 = 0. If one exists, it will be found.

 If a separating hyperplane does not exist, 𝑤∗, 𝑏∗ is still sensible.

 𝑤∗ = 0 is not a solution.

Note that the perceptron corresponds to

𝜑 𝑡 = max −𝑡, 0 (32)

while our modified criterion corresponds to

𝜑 𝑡 = max −(𝑡 − 1),0 (33)

We can now express the LP for linear classification in the standard form of a LP.

The variable is:

𝑢 = 𝑤1 𝑤2 … 𝑤𝑑 𝑏 𝜉1 𝜉2 … 𝜉𝑛
𝑇 (34)

The objective function is 𝑐𝑇𝑢 where

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

1232 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

 𝑐 = 0 0 … 0
1

𝑛

1

𝑛
…

1

𝑛

𝑇

 (35)

The matrix 𝐴2𝑛×(𝑑+1+𝑛) is

 𝐴 =

𝑦1𝑥11 … 𝑦1𝑥1𝑑 𝑦1 1 0 … 0

𝑦2𝑥21 … 𝑦2𝑥2𝑑 𝑦2 0 1 … 0
⋮

𝑦𝑛𝑥𝑛1 … 𝑦𝑛𝑥𝑛𝑑 𝑦𝑛 0 0 … 1
0 … 0 0 0 1 0 … 0

⋮
0 … 0 0 0 0 … 0 1

 (36)

and

 𝑎 = 1 1 … 1 0 0 … 0 𝑇 (37)

where 𝑎 is a (2𝑛 × 1)-column matrix.

Then, the constraint will be:

 𝐴𝑢 ≤ −𝑎 (38)

 The LP linear classifier was developed by Olvi Mangasarian in 1965.

The methods described so far for finding a separating hyperplane do not pay attention to which hyperplane is produced. Yet, if

one separating hyperplane exists then infinitely many do. So, which one should we choose? As we mentioned above

The margin 𝜌 of a separating hyperplane is the distance from the hyperplane to the closest 𝑥𝑖 .

𝜌 𝑤, 𝑏 = 𝑚𝑖𝑛
 𝑤𝑇𝑥 + 𝑏

 𝑤

and the optimal separating hyperplane is the separating hyperplane whose margin is maximal.

 𝑤∗, 𝑏∗ = arg max 𝜌 𝑤, 𝑏

3.3. SVM

The Support Vector Machine (SVM) is a linear classifier that can be viewed as an extension of the Perceptron developed by

Rosenblatt. The Perceptron guaranteed that you find a hyperplane if it exists. The SVM finds the maximum margin separating

hyperplane.

3.3.1. MARGIN

We already saw the definition of a margin in the context of the Perceptron. Recall that a hyperplane is defined through 𝑤, 𝑏 as a

set of points such that

 ℋ = {𝑥|𝑤𝑇𝑥 + 𝑏 = 0} (39)

Let the margin 𝜌 be defined as the distance from the hyperplane to the closest point across both classes.

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

1233 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

https://link.springer.com/content/pdf/10.1007%2FBF00994018.pdf
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

By definition, the margin and hyperplane are scale invariant:

 𝜌(𝛽𝑤, 𝛽𝑏) = 𝜌(𝑤, 𝑏), ∀𝛽 ≠ 0 (40)

Note that if the hyperplane is such that 𝜌 is maximized, it must lie right in the middle of the two classes. In other words, 𝜌 must be

the distance to the closest point within both classes. (If not, you could move the hyperplane towards data points of the class that is

further away and increase 𝜌, which contradicts that 𝜌 is maximized.)

3.3.2. MAX MARGIN CLASSIFIER

We can formulate our search for the maximum margin separating hyperplane as a constrained optimization problem. The

objective is to maximize the margin under the constraints that all data points must lie on the correct side of the hyperplane:

max
𝑤,𝑏

𝜌(𝑤, 𝑏)

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑚𝑎𝑟𝑔𝑖𝑛

 𝑠. 𝑡. 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 0, ∀𝑖

𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑛𝑔 𝑕𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒

 (41)

If we plug in the definition of 𝜌 we obtain:

max
𝑤,𝑏

1

 𝑤 2

min
𝑥𝑖∈𝐷

 𝑤𝑇𝑥𝑖 + 𝑏

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑚𝑎𝑟𝑔𝑖𝑛

 𝑠. 𝑡. 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 0, ∀𝑖

𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑛𝑔 𝑕𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒

 (42)

Because the hyperplane is scale invariant, we can fix the scale of 𝑤, 𝑏 anyway we want. Let us choose it such that

 min𝑥∈𝐷 𝑤𝑇𝑥 + 𝑏 = 1 (43)

We can add this rescaling as an equality constraint. Then our objective becomes:

 max𝑤,𝑏
1

 𝑤 2
∙ 1 = min𝑤,𝑏 𝑤 2 = min𝑤,𝑏 𝑤𝑇𝑤 (44)

(Where we made use of the fact 𝑓(𝑧) = 𝑧2 is a monotonically increasing function for 𝑧 ≥ 0 and ∥ 𝑤 ∥≥ 0, i.e. the 𝑤 that

maximizes 𝑤 2 also maximizes 𝑤𝑇𝑤.)

The new optimization problem becomes:

min
𝑤,𝑏

𝑤𝑇𝑤

𝑠. 𝑡. 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 0, ∀𝑖,

 min𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 = 1 (45)

These constraints are still hard to deal with, however, fortunately, we can show that (for the optimal solution) they are equivalent

to a much simpler formulation.

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

1234 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

min
𝑤,𝑏

𝑤𝑇𝑤

 𝑠. 𝑡. 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖 (46)

This new formulation is a quadratic optimization problem. The objective is quadratic and the constraints are all linear. We can be

solve it efficiently with any QCQP (Quadratically Constrained Quadratic Program) solver. It has a unique solution whenever a

separating hyper plane exists. It also has a nice interpretation: Find the simplest hyperplane (where simpler means smaller 𝑤𝑇𝑤)

such that all inputs lie at least 1 unit away from the hyperplane on the correct side.

3.3.3. SUPPORT VECTORS

For the optimal 𝑤, 𝑏 pair, some training points will have tight constraints, i.e.

 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 = 1 (47)

 (This must be the case, because if for all training points we had a strict > inequality, it would be possible to scale down both

parameters 𝑤, 𝑏 until the constraints are tight and obtained an even lower objective value.) We refer to these training points

as support vectors. Support vectors are special because they are the training points that define the maximum margin of the

hyperplane to the data set and they therefore determine the shape of the hyperplane. If you were to move one of them and retrain

the SVM, the resulting hyperplane would change. The opposite is the case for non-support vectors (provided you don't move them

too much, or they would turn into support vectors themselves). This will become particularly important in the dual formulation

for Kernel-SVMs.

3.3.4. SVM WITH SOFT CONSTRAINTS

If the data is low dimensional it is often the case that there is no separating hyperplane between the two classes. In this case, there

is no solution to the optimization problems stated above. We can fix this by allowing the constraints to be violated ever so slight

with the introduction of slack variables:

min
𝑤,𝑏

𝑤𝑇𝑤 + 𝐶 𝜉𝑖

𝑛

𝑖=1

𝑠. 𝑡. 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , ∀𝑖

 𝜉𝑖 ≥ 0, ∀𝑖 (48)

The slack variable 𝜉𝑖 allows the input 𝑥𝑖 to be closer to the hyperplane (or even be on the wrong side), but there is a penalty in the

objective function for such "slack". If 𝐶 is very large, the SVM becomes very strict and tries to get all points to be on the right side

of the hyperplane. If 𝐶 is very small, the SVM becomes very loose and may "sacrifice" some points to obtain a simpler (i.e.

lower 𝑤 2
2) solution.

3.3.5. UNCONSTRAINED FORMULATION

Let us consider the value of 𝜉𝑖 for the case of 𝐶 ≠ 0. . Because the objective will always try to minimize 𝜉𝑖 as much as possible,

the equation must hold as an equality and we have:

𝜉𝑖 = 1 − 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 𝑖𝑓 𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 < 1 and 𝜉𝑖 = 0 𝑖𝑓 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 (49)

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

1235 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

https://en.wikipedia.org/wiki/Quadratic_programming
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote14.html

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

This is equivalent to the following closed form:

 𝜉𝑖 = max⁡ 1 − 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 , 0 (50)

If we plug this closed form into the objective of our SVM optimization problem, we obtain the following unconstrained version as

loss function and regularizer:

 min𝑤,𝑏 𝑤𝑇𝑤
𝑙2−𝑟𝑒𝑔𝑢𝑙𝑎𝑙𝑖𝑧𝑒𝑟

+ 𝐶 max⁡ 1 − 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 , 0

𝑕𝑖𝑛𝑔𝑒 −𝑙𝑜𝑠𝑠

𝑛
𝑖=1 (51)

This formulation allows us to optimize the SVM parameters (𝑤, 𝑏) just like logistic regression (e.g. through gradient descent).

The only difference is that we have the hinge-loss instead of the logistic loss. (see [20])

4. RESULTS

Several years ago, Professor Y. Sergeyev, in a book and in a series of prominent papers [14, 15, 16, 17] has proposed a new

approach to infinite and infinitesimal numbers. He has introduced a new infinite unit of measure (the numeral grossone, indicated

by ①) as the number of elements of the set of the natural numbers, showing that it is possible to work successfully with infinite

and infinitesimal quantities using it to solve many problems in the field of applied and theoretical mathematics, and not only. In

this new numeral system, there is the possibility to handle infinite and infinitesimal numbers as particular cases of a single

structure. This offers a new perspective and different approaches to important aspects of mathematics such as sums of series (in

particular, divergent series), limits, derivatives, etc.

The new numeral grossone can be introduced by describing its properties (in a similar way as it is done in the past with the

introduction of 0 to switch from natural to integer numbers). The Infinity Unit Axiom postulate (IUA) [15, 14] is composed of

three parts: Infinity, Identity, and Divisibility:

• Infinity. Any finite natural number 𝑛 is less than grossone, i.e., 𝑛 < ①.

• Identity. The following relationships link ① to the identity elements 0 end 1

0 ・① = ①・ 0 = 0, ① − ① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0 (52)

• Divisibility. For any finite natural number 𝑛, the sets 𝑁𝑘,𝑛 , 1 ≤ 𝑘 ≤ 𝑛,

𝑁𝑘,𝑛 = 𝑘, 𝑘 + 𝑛, 𝑘 + 2𝑛, 𝑘 + 3𝑛, , 1 ≤ 𝑘 ≤ 𝑛,

 𝑁𝑘,𝑛
𝑛
𝑘=1 = 𝑁 (53)

have the same number of elements indicated by
①

𝑛
 .

The axiom above states that the infinite number ①, greater than any finite number, behaves as any natural number with the

elements 0 and 1. Moreover, the quantities
①

𝑛
 are integers for any natural 𝑛. This axiom is added to the standard axioms of real

numbers and, therefore, all standard properties (commutative, associative, existence of inverse, etc.) also apply to ①. Sergeyev

[16, 17] also defines a new way to express the infinite and infinitesimal numbers using a register similar to traditional positional

number system, but with base number ①. A number 𝐶 in this new system can be constructed by subdividing it into groups

corresponding to powers of ① and has the following representation:

𝐶 = 𝑐𝑝𝑚
①𝑝𝑚 + + 𝑐𝑝1

①𝑝1 + 𝑐𝑝0
①𝑝0 + 𝑐𝑝−1

①𝑝−1 + + 𝑐𝑝−𝑘
①𝑝−𝑘 . (54)

where the quantities 𝑐𝑖 (the grossdigits) and 𝑝𝑖 (the grosspowers) are expressed by the traditional numerical system for

representing finite numbers (for example, floating point numbers). The grosspowers are sorted in descending order:

𝑝𝑚 > 𝑝𝑚−1 > > 𝑝1 > 𝑝0 > 𝑝−1 > . . . 𝑝−(𝑘−1) > 𝑝−𝑘

with 𝑝0 = 0.

In this new numeral system, finite numbers are represented by numerals with only one grosspower 𝑝0 = 0. Infinitesimal numbers

are represented by numeral 𝐶 having only negative finite or infinite grosspowers. The simplest infinitesimal number is ①−1 for

which

①−1① = ① ①−1 = 1 (55)

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

1236 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

We note that infinitesimal numbers are not equal to zero. Infinite numbers are expressed by numerals having at least one finite or

infinite grosspower greater than zero.

The newly proposed numeral system pays close attention to its numerical aspects and to applications. The Infinity Computer

proposed by Sergeyev is able to execute computations with infinite, finite, and infinitesimal numbers numerically (not

symbolically) in a novel framework.

In the following example we use grossone to solve a problem presented in the literature. (see [18])

Two arbitrary points from the iris dataset are selected for analysis, and the optimal hyperplane is calculated.

Let, first, A(12, 4.8), B(100, 6.3) be two arbitrary points where x – index in the dataset, y –length of the sepal.

The point A will be considered negative and B positive, thus 𝑦𝐴 = 1 , 𝑦𝐵 = −1 .

We need to find the optimal separate hyperplane.

It is known that any hyperplane can be described as:

𝑤𝑥 + 𝑏 = 0 (56)

where w – normal vector to the hyperplane and
𝑏

 𝑤
 - perpendicular distance from the hyperplane to the origin.

To find 𝑤 and b dual form should be introduced. It contains a quadratic objective function with constraints as follows:

max𝑎 𝐿𝐷 = 𝑎𝑖
𝐿
𝑖=1 −

1

2
 𝑎𝑖𝑖 ,𝑗 𝑎𝑗 𝑦𝑖𝑦𝑗 𝑥𝑖 , 𝑥𝑗 (57)

if 𝑎𝑖
𝐿
𝑖=1 𝑦𝑖 = 0, 𝑎𝑖 ≥ 0, ∀𝑖.

After data substitution

max𝑎 𝐿𝐷 = 𝑎𝑖
𝐿
𝑖=1 −

1

2
 𝑎𝑖𝑖 ,𝑗 𝑎𝑗 𝑦𝑖𝑦𝑗 𝑥𝑖 , 𝑥𝑗 =

𝑎1 + 𝑎2 −
1

2
 𝑎1𝑎1 ∗ 1 ∗ 1 ∗

12
4.8

 ,
12
4.8

 + 2 ∗ 𝑎1𝑎2 ∗ 1 ∗ −1 ∗
12
4.8

 ,
100
6.3

 + 𝑎2𝑎2 ∗ −1 ∗ −1 ∗
100
6.3

 ,
100
6.3

 = 𝑎1 +

𝑎2 −
1

2
 167.04𝑎1

2 − 2460.48𝑎1𝑎2 + 10039.69𝑎2
2 (58)

Using the method proposed in the literature (see [13], Theorem 3.3) we can solve this problem as follows:

First, we consider the function 𝑓:

𝑓 = 𝑥1 + 𝑥2 −
1

2
 167.04𝑥1

2 − 2460.48𝑥1𝑥2 + 10039.69𝑥2
2 +

①

2
 𝑥1 − 𝑥2

2 (59)

which must be minimized

subject to 𝑥1 − 𝑥2 = 0

Next, we calculate its partial derivatives and form the following system:

𝜕𝑓

𝜕𝑥1
= 0 ⟺ −167.04 + ① 𝑥1 + 1230.24 − ① 𝑥2 = −1 (60)

𝜕𝑓

𝜕𝑥2
= 0 ⟺ 1230.24 − ① 𝑥1 + −10039.36 + ① 𝑥2 = −1 (61)

Solving this system of equations, using the properties of grossone, we obtain:

𝑥1 = 𝑥2 =
2①

7745 .92①
≈

2①

7746①
= 0.00025819 (62)

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

1237 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

So:

𝑎1 = 𝑥1 = 0.000258 =
25

96837

𝑎2 = 𝑥2 = 0.000258 =
25

96837

Next, let us calculate 𝑤 and 𝑏:

𝑤 = 𝑎𝑖𝑥𝑖𝑦𝑖

𝐿

𝑖=1

=
25

96837
∗ 1 ∗

12
4.8

 +
25

96837
∗ −1 ∗

100
6.3

 =

300

96387
120

96837

 −

2500

96387
157.5

96837

 =

2200

96387
37.5

96837

𝑏 = 1 −
25

96837
∗

12
4.8

 ,
12
4.8

 −
25

96837
∗

12
4.8

 ,
100
6.3

 =
96837

96837
−

4176

96837
−

30756

96837
 =

96837

96837
+

26580

96837
=

123417

96837

The representation of the hyperplane will be:

 𝑤1𝑥 + 𝑤2𝑦 + 𝑏 = 0 (63)

Substituting the numbers, we obtain

 −
2200

96837
𝑥 −

37.5

96837
𝑦 +

123417

96837
= 0 (64)

Comparing the result of the program and using the SVM of the sklearn library, the following result of the program is given:

𝑤 = −0.02272067 − 0.00038728

𝑏 = 1.27450707
Indices of support vectors = 1 0 ;

Support vectors = 100 6.3 12 4.8 ;

Number of support vectors for each class = 1 1 ;
Coefficients of the support vector in the decision function = 0.00025819 0.00025819 .
The results are summarized in the following table:

𝒘 Support Vectors (SV) Indices of SV Number of SV Coefficients of SV

𝑤1 𝑤2 I II I II I II I II

−0.02272067 −0.00038728 100 6.3 12 4.8 1 0 1 1 0.00025819 0.00025819

Table I

The values of 𝑤 and 𝑏 are calculated manually and coincide with those calculated with the help of the program, so the calculations

Since its earliest days as a discipline, ML has used many optimization formulations and algorithms. In addition, ML has

contributed to optimization, stimulating the development of new optimization approaches that address the significant questions

are correct. Also, since we have only two points in this case, they act as reference vectors, one for each class.

CONCLUSION

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

1238 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

presented by ML applications. This interplay and collaboration continues to deepen, producing a growing literature at the

intersection of the two fields and being a very attractive subject for many leading researchers, as well.

Linear classification is a useful tool in ML and data mining. Recently, many research works have developed efficient optimization

methods to construct linear classifiers and applied them to some large-scale applications.

Support vector machines (SVMs) are a set of related supervised learning algorithm developed by Vladimir Vapnik in the mid 90's

for classification and regression. Support vector machines (SVMs) have been successfully applied to a large number of real-world

applications, such as text categorization and handwritten character recognition. The use of optimization methodologies plays a

central role in finding solutions of SVMs, in fact the support vector machine (SVM) is the first contact that many optimization

researchers had with ML, due to its classical formulation as a convex quadratic program — simple in form, though with a

complicating constraint. Taking into account their importance and their closed relationship with the mathematical programming,

in this paper, we have described in more details the SVM classifier. We have solved a numerical example from the literature using

the ML & SVM methods. The use of grossone has significantly simplified its solution. Even this simple example, shows for

another time the large scale of grossone applications due to its elegance and efficiency. We are sure that there are many other

problems from ML in which the grossone may be used successfully. So, for future work, we recommend solving the same

problem, with respect to the design of new evolutionary, genetic and recommendation models. There are numerous publications

on this research area. The interested reader may consult, among others, the references given in this paper. (See [21]-[31]).

1. Jaggi, Martin, 2011, Sparse Convex Optimization Methods for ML, https://doi.org/10.3929/ethz-a-007050453.

2. Kristin P. Bennett and Emilio Parrado-Hernández, 2006, The Interplay of Optimization and ML Research, Journal of ML Research 7, pp. 1265–1281.

3. Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao, 2019,A Survey of Optimization Methods from a ML Perspective, arXiv:1906.06821v2 [cs.LG] 23.
4. Y. Kim, 2014, Convolutional neural networks for sentence classification, in Conference on Empirical Methods in Natural Language Processing, pp.

1746–1751.

5. D. C. Ciresan, U. Meier, and J. Schmidhuber, 2012, Multi-column deep neural networks for image classification, in IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3642–3649.

6. J. A. Hartigan and M. A. Wong, 1979, Algorithm AS 136: A k-means clustering algorithm, Journal of the Royal Statistical Society. Series C (Applied

Statistics), vol. 28, pp. 100–108.
7. Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin, Recent Advances of Large-scale Linear Classification.

8. Witten, I., Frank, E., and Hall, M. 2011, Data Mining: Practical ML Tools and Techniques, The Morgan Kaufmann Series in Data Management

Systems, Elsevier Science,.
9. Hamel, L. H. 2011, Knowledge discovery with support vector machines, vol. 3. John Wiley & Sons.

10. Rao, K., and Koolagudi, S. 2012, Emotion Recognition using Speech Features. SpringerBriefs in Electrical and Computer Engineering. Springer.

11. Fisher, R. A. 1936,The use of multiple measurements in taxonomic problems. Annals of eugenics 7, pp. 179-188.
12. Bache, K., and Lichman, M. 2013,Iris data set, http://archive.ics.uci.edu/ml/datasets/Iris.

13. Sonia De Cosmis, Renato De Leone, 2012, The use of Grossone in Mathematical Programming and Operations Research, arXiv:1107.5681v2

[math.OC].
14. Yaroslav D. Sergeyev. 2003, Arithmetic of Infinity. Edizioni Orizzonti Meridionali, CS.

15. Yaroslav D. Sergeyev. 2008, A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica, 19(4), pp.

567–596.
16. Yaroslav D. Sergeyev. 2009, Numerical computations and mathematical modelling with infinite and infinitesimal numbers. Journal of Applied

Mathematics and Computing, 29:177195.

17. Yaroslav D. Sergeyev.2009, Numerical point of view on calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite,
and infinitesimal domains. Nonlinear Analysis Series A: Theory,Methods &Applications, 71(12):e1688e1707.

18. Nataliya Boyko and Rostyslav Hlynka, 2021, Application of Machine Algorithms for Classification and Formation of the Optimal Plan, COLINS-2021:

5th International Conference on Computational Linguistics and Intelligent Systems, April 22–23, 2021, Kharkiv, Ukraine.
19. https://svm.michalhaltuf.cz/linear-classifiers/

20. https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote09.html
21. Bhaskaran, S.; Marappan, R.; Santhi, B. Design and Analysis of a Cluster-Based Intelligent Hybrid Recommendation System for E-Learning

Applications. Mathematics 2021, 9, 197. https://doi.org/10.3390/math9020197

22. Marappan, R., Sethumadhavan, G. Solving Graph Coloring Problem Using Divide and Conquer-Based Turbulent Particle Swarm Optimization. Arab J
Sci Eng (2021). https://doi.org/10.1007/s13369-021-06323-x

23. Bhaskaran, S.; Marappan, R.; Santhi, B. Design and Comparative Analysis of New Personalized Recommender Algorithms with Specific Features for

Large Scale Datasets. Mathematics 2020, 8, 1106. https://doi.org/10.3390/math8071106
24. Marappan, R.; Sethumadhavan, G. Complexity Analysis and Stochastic Convergence of Some Well-known Evolutionary Operators for Solving Graph

Coloring Problem. Mathematics 2020, 8, 303. https://doi.org/10.3390/math8030303
25. Marappan, R., Sethumadhavan, G. Solution to Graph Coloring Using Genetic and Tabu Search Procedures. Arab J Sci Eng 43, 525–542 (2018).

https://doi.org/10.1007/s13369-017-2686-9

26. R. Marappan and G. Sethumadhavan, "Solving channel allocation problem using new genetic algorithm with clique partitioning method," 2016 IEEE
International Conference on Computational Intelligence and Computing Research (ICCIC), 2016, pp. 1-4, doi: 10.1109/ICCIC.2016.7919671.

27. R. Marappan and G. Sethumadhavan, "Solution to graph coloring problem using divide and conquer based genetic method," 2016 International

Conference on Information Communication and Embedded Systems (ICICES), 2016, pp. 1-5, doi: 10.1109/ICICES.2016.7518911.

1239 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

REFERENCES

https://doi.org/10.3929/ethz-a-007050453
http://archive.ics.uci.edu/ml/datasets/Iris
https://svm.michalhaltuf.cz/linear-classifiers/
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote09.html

International Journal of Current Science Research and Review

ISSN: 2581-8341

IJCSRR @ 2022

www.ijcsrr.org

Available at: ijcsrr.org

28. R. Marappan and G. Sethumadhavan, "Divide and conquer based genetic method for solving channel allocation," 2016 International Conference on

Information Communication and Embedded Systems (ICICES), 2016, pp. 1-5, doi: 10.1109/ICICES.2016.7518914.

29. Raja Marappan, Gopalakrishnan Sethumadhavan , Solving Fixed Channel Allocation using Hybrid Evolutionary Method, MATEC Web of Conferences
57 02015 (2016) DOI: 10.1051/matecconf/20165702015

30. G. Sethumadhavan and R. Marappan, "A genetic algorithm for graph coloring using single parent conflict gene crossover and mutation with conflict

gene removal procedure," 2013 IEEE International Conference on Computational Intelligence and Computing Research, 2013, pp. 1-6, doi:
10.1109/ICCIC.2013.6724190.

31. R. Marappan and G. Sethumadhavan, "A New Genetic Algorithm for Graph Coloring," 2013 Fifth International Conference on Computational

Intelligence, Modelling and Simulation, 2013, pp. 49-54, doi: 10.1109/CIMSim.2013.17.

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact Factor: 5.995

 Page No.- 1226-1240

Cite this Article: Dr. Jollanda Shara (2022). Solving A ML Problem Using The Grossone. International Journal of Current Science
Research and Review, 5(4), 1226-1240

1240 Corresponding Author: Dr. Jollanda Shara Volume 05 Issue 04 April 2022

