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Solving A ML Problem Using The Grossone  

 

 

ABSTRACT 

Machine learning (ML) has grown at a remarkable rate, becoming one of the most popular research directions. It is widely applied 

in various fields, such as machine translation, speech recognition, image recognition, recommendation system, etc. Optimization  

problems lie at the heart of most machine learning approaches. So, the essence of most ML algorithms is to build an optimization 

model and learn the parameters in the objective function from the given data. A series of effective optimization methods were put 

forward, in order to promote the development of ML. They have improved the performance and efficiency of ML methods. The 

aim of this paper is to show that, among many other fields, the grossone may be used successfully in the ML. The grossone, the 

infinite unit of measure, has been proposed by Professor Y. Sergeyev in a number of noticeable works, as the number of elements 

of the set, N, of natural numbers. It is expressed by the numeral ①. This new computational methodology would allow one to 

work with infinite and infinitesimal quantities in the ―same way‖ as that working with finite numbers  More details about it are 

given in Section 4. We analyze the SVM from the viewpoint of mathematical programming, solving a numerical example using 

the grossone. The Iris dataset was chosen for the implementation of the support vector method. This is a wellknown set of data 

used in the area of ML.   
 

KEYWORDS: ML, grossone, optimization, SVM, linear classifier, hyperplane.  

 

INTRODUCTION 

In an informal sense, ML is the task of building a model for some quantity (or function) that we would like to predict, or in other 

words, learn. The model is usually built from a set of  ―training‖ data for which the corresponding quantity of interest is known. 

Later, the obtained model is used to predict on new or unknown data, where we will then evaluate the performance of the obtained 

model. Until now, this task description spectacularly mirrors classical regression, which is not a coincidence. Concrete practical 

examples of such ML questions include classifying handwritten characters, reconstructing radio signals from very noisy sources, 

detecting a disease from MRI brain images, recommending movies or other products depending on personal ratings given to other 

items, ranking websites in a search engine based on their text content, modeling the terrain from the data from the sensor of an 

autonomous car, and predicting climate parameters or stock prices based on historical data, as well as many other applications. A 

learning algorithm tries to learn a function given a set of data. Generally, given more data, a learning algorithm should ideally 

learn the function better. In other words, its performance should improve after looking at more data. One of the important class of 

learning algorithms is the class of Supervised learning algorithms. For supervised learning, given training data (sample inputs and 

outputs of the function on those inputs), our task is to learn the function. Without any assumptions on the type of function, it is 

hard to learn the function. In almost all cases, we assume that the function belongs to a class of functions (linear, quadratic etc.) 

and hence is specified by some parameters. So, the problem translates to estimating the parameters, given a set of training data. 

Overall, the main steps of ML are to build a model hypothesis, define the objective function, and solve the maximum or minimum 

of the objective function to determine the parameters of the model. In these three vital steps, the first two steps are the modeling 

problems of ML, and the third step is to solve the desired model by optimization methods. There are now many flavors of 

mathematical programs: linear, quadratic, semi-definite, semiinfinite, integer, nonlinear, goal, geometric, fractional, etc. For 

example, linear programs have a linear objective and linear constraints. Linear programming is not a programming language like 

C++, Java, or Visual Basic. Linear programming can be defined as: 

 ―A mathematical method to allocate scarce resources to competing activities in an optimal manner when the problem can be 

expressed using a linear objective function and linear inequality constraints.‖                                           

Linear programming is a special case of mathematical programming (mathematical optimization). Now linear programming is a 

subset of ML known as supervised learning. In a supervised learning, the system knows the patterns and the pattern is well 

defined based on previous data and information. A more complete description of these problems can be obtained from the 

mathematical programming glossary (www.cudenver.edu/∼hgreenbe/glossary/) and the NEOS optimization guide (www-

fp.mcs.anl.gov/otc/Guide/). Each flavor of mathematical programming is a different research area in itself with extensive theory 

and algorithms. In the sequel we give some definitions which will be used in the paper. 

University ―Eqrem Cabej‖, Gjirokaster, Albania

Volume 05 Issue 04 April 2022

DOI: 10.47191/ijcsrr/V5-i4-45, Impact  Factor: 5.995

      Page No.- 1226-1240

Dr. Jollanda Shara

1226  Corresponding Author: Dr. Jollanda Shara                                                                                   Volume 05 Issue 04 April 2022



International Journal of Current Science Research and Review 

ISSN: 2581-8341  

 

IJCSRR @ 2022 

 
www.ijcsrr.org 

 

csrr.org                                
  

Definitions: 

1. A separating hyperplane is any hyperplane that classifies perfectly the training data.  

2. The margin 𝜌 of a separating hyperplane is the distance from the hyperplane to the closest 𝑥𝑖 . 

            𝜌 𝑤, 𝑏 = 𝑚𝑖𝑛
 𝑤𝑇𝑥+𝑏 

 𝑤 
                          (1) 

3. The optimal separating hyperplane is the separating hyperplane whose margin is maximal. 

            𝑤∗, 𝑏∗ = arg max 𝜌 𝑤, 𝑏                   (2) 

1. ML&OPTIMIZATION           

Almost all ML algorithms can be formulated as an optimization problem to find the extremum of an objective function. Building 

models and constructing reasonable objective functions are the first step in ML methods. With the determined objective function, 

appropriate numerical or analytical optimization methods are usually used to solve the optimization problem. 

According to the modeling purpose and the problem to be solved, ML algorithms can be divided into supervised learning, semi-

supervised learning, unsupervised learning, and reinforcement learning. Particularly, supervised learning is further divided into the 

classification problem (e.g., sentence classification [4], image classification [5], etc.) and regression problem; unsupervised 

learning is divided into clustering and dimension reduction [6], among others. For example, the optimization problems in 

supervised learning have one of the following general form: 

The goal is to find an optimal mapping function 𝑓(𝑥) to minimize the loss function of the training samples, 

min𝜃
1

𝑁
 𝐿  𝑦𝑖 , 𝑓 𝑥𝑖 , 𝜃  𝑁

𝑖=1                                   (3) 

where 𝑁 is the number of training samples, 𝜃 is the parameter of the mapping function, 𝑥𝑖  is the feature vector of the ith samples, 

𝑦𝑖  is the corresponding label, and 𝐿 is the loss function. 

There are many kinds of loss functions in supervised learning, such as the square of Euclidean distance, crossentropy, contrast 

loss, hinge loss, information gain and so on. For regression problems, the simplest way is using the square of Euclidean distance 

as the loss function, that is, minimizing square errors on training samples. But the generalization performance of this kind of 

empirical loss is not necessarily good. Another typical form is structured risk minimization, whose representative method is the 

support vector machine. On the objective function, regularization items are usually added to alleviate overfitting, e.g., in terms of 

𝐿2 norm, 

min𝜃
1

𝑁
 𝐿  𝑦𝑖 , 𝑓 𝑥𝑖 , 𝜃  + 𝜆 𝜃 2

2𝑁
𝑖=1                      (4) 

where 𝜆 is the compromise parameter, which can be determined through cross-validation. 

We observe that the relationship between available mathematical programming models and ML models has been increasingly 

combined. The adaptation of mathematical programming models and algorithms has helped ML research advance. Researchers in 

neural networks went from backpropagation in (Rummelhart et al., 1986) to exploring the use of various unconstrained nonlinear 

programming techniques such as discussed in (Bishop, 1996). The fact that backpropagation worked well in turn stimulated 

mathematical programmers to work on stochastic gradient descent to better understand its properties, as in (Mangasarian and 

Solodov, 1994). With the advent of kernel methods (Cortes and Vapnik, 1995), mathematical programming terms such as 

quadratic program, Lagrange multipliers and duality are now very familiar to competent ML students. ML researchers are 

designing novel models and methods to exploit more branches of the mathematical programming tree with a special emphasis on 

constrained convex optimization. The special topic reflects the diversity of mathematical programming models being employed in 

ML. We see how recent advances in mathematical programming have allowed rich new sets of ML models to be explored without 

initial worries about the underlying algorithm. In turn, ML has motivated advances in mathematical programming: the 

optimization problems arising from large scale ML and data mining far exceed the size of the problem typically reported in the 

mathematical programming literature. The interplay of optimization and ML is complicated by the fact that ML mixes modeling 

and methods. In that matter, ML is much like operations research (OR). Mathematical programming/optimization is historically a 

subfield of OR. OR is concerned with modeling a system. Mathematical programming is concerned with analyzing and solving 

the model. Both OR and ML analysts address real world problems by formulating a model, deriving the core optimization 

problem, and using mathematical programming to solve it. According to (Radin, 1998) an OR analyst must trade off tractability – 

―the degree to which the model admits convenient analysis‖ and validity – ―the degree to which inferences drawn from the model 
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hold for real systems‖. So at a high level the OR and ML analysts face the same validity and tractability dilemmas and it is not 

surprising that both can exploit the same optimization toolbox. (see [2]) 

 

2. LINEAR CLASSIFIERS 

 

Linear classification is a useful tool in ML and data mining. In contrast to nonlinear classifiers such as kernel methods, which map 

data to a higher dimensional space, linear classifiers directly work on data in the original input space. While linear classifiers fail 

to handle some inseparable data, they may be sufficient for data in a rich dimensional space. For example, linear classifiers have 

shown to give competitive performances on document data with nonlinear classifiers. An important advantage of linear 

classification is that training and testing procedures are much more efficient. Therefore, linear classification can be very useful for 

some large-scale applications. Recently, the research on linear classification has been a very active topic. (see [7]) 

The classification problem is sometimes called supervised learning, because the method operates under supervision [8]. The goal 

of the supervised learning is to derive a mapping (function) which not only can correctly describe the data in the training set, but 

more importantly it is able to generalize from the training set to the unobserved situations. 

Since the main application of the classifier models is the prediction, the generalization ability of the learning algorithms are 

without doubt the most important property that distinguishes a good classifier from the bad one. [9] 

The function derived from the supervised learning introduces a border between two classes – we say it forms a decision 

boundary or decision surface. 

Depending on the shape of this decision boundary we distinguish linear classifiers and non-linear classifiers. The linear classifiers 

represent a wide family of algorithms, whose common characteristic is that the decision is based on the linear combination of the 

input variables [10]. Logistic regression and Support vector machines, can be regarded as members of this wide family. 

So, to put it simple, in linear classification, we seek to divide the two classes by a linear separator in the feature space. If 𝑝 =  2, 

the separator is a line, if 𝑝 =  3 it's a plane, and in general it's a (𝑝 − 1)- dimensional hyper-plane in a 𝑝-dimensional space. 

Fisher in his classic paper [11] introduced his linear discriminant, which was probably the first linear classifier. The Iris Data set 

[12], published in the same paper to exhibit the power of his linear discriminant, became eventually the most cited classification 

data set, used widely for educational and explanation purposes. It demonstrates a simple example of the binary classification 

problem with 2 explanatory variables and 100 observations. The goal of the classification is to draw a line that could serve as a 

borderline between the two different classes. Since the data are clearly linearly separable, it does not appear to be much a 

challenging task. (see [19]) 

If we want to write a function which does linear classification, it would look something like this: 

 

classify.linear = function(x,w,b) { 

distance.from.plane = function(z,w,b) { sum(z*w) + b } 

distances = apply(x, 1, distance.from.plane) 

return(ifelse(distances < 0, -1, +1)) 

} 

 

3. LINEAR REGRESSION, PERCEPTRON AND SVM 

For convenience, assume that 𝑌 ∈ {−1, +1}. 

A linear classifier has the form  

  𝑓 𝑥 = 𝑠𝑖𝑔𝑛{𝑤𝑇𝑥 + 𝑏}                             (5) 

where 𝑤 ∈ 𝑅𝑑 , 𝑏 ∈ 𝑅. 

In addition to be very useful as a result of their own ability, linear classifiers are at the heart of many discrimination rules, such as 

SVM, decision trees and neural networks. Approaches to linear classification are numerous. In fact, a study of linear classifiers 

shows that they are widely used in the most of various algorithms and principles of supervised learning. 

3.1. LINEAR REGRESSION 

In regression, we observe  𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1, 2, … , 𝑛 where 𝑥𝑖 ∈ 𝑅𝑑 , 𝑦𝑖 ∈ 𝑅. It is assumed that  
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     𝑌 = 𝑕 𝑋 + 𝜖                                             (6) 

where 𝑕 is a deterministic function and 𝜖 is zero-mean noise. The goal is to estimate the regression function 

𝑕 𝑥 = 𝐸{𝑌|𝑋 = 𝑥}                                               (7) 

In linear regression, it is assumed that 

𝑕 𝑥 = 𝑤𝑇𝑥 + 𝑏                                                      (8) 

To apply linear regression to classification, we treat the labels 𝑦𝑖 ∈ {−1, 1} as the response variables in a regression problem. In 

fact, we are interested only in the final decision  

𝑠𝑖𝑔𝑛{𝑤𝑇𝑥 + 𝑏}                                                        (9) 

The standard approach of linear regression is to minimize the squared error  

 [𝑦𝑖 − (𝑤𝑇𝑥𝑖 + 𝑏)]2                                               (10) 

Writing it in matrix notation as follows 

𝒚 =  

𝑦1

⋮
𝑦𝑛

 , 𝒘 =  

𝑏
𝑤1

⋮
𝑤𝑑

 , 𝑿 =  

1 𝑥11
… 𝑥1𝑑

1 𝑥21 … 𝑥2𝑑

⋮
1 𝑥𝑛1 … 𝑥𝑛𝑑

        (11) 

we seek 𝒘 minimizing 

 𝒚 − 𝑿𝒘 2                                                                (12) 

Hence, 

𝒘 = (𝑿𝑇𝑿)−1𝑿𝑇𝒚                                                        (13) 

 

Recall that, a separating hyperplane is any hyperplane that classifies perfectly the training data. 

Assume that such a hyperplane exists. The problem is to find one. 

Some geometry: 

Let 𝑧 ∈ 𝑅𝑑  and let 𝑤, 𝑏 define a hyperplane. Let us find the distance of 𝑧 from the hyperplane {𝑥 ∈ 𝑅𝑑 : 𝑤𝑇𝑥 + 𝑏 = 0}. 

We can write  

𝑧 = 𝑧0 + 𝑟
𝑤

 𝑤 
                                                              (14) 

where  𝑤𝑇𝑧0 + 𝑏 = 0 and 𝑟 may be negative. Then, 

𝑤𝑇𝑧 + 𝑏 = 𝑤𝑇𝑧0 + 𝑤𝑇  𝑟
𝑤

 𝑤 
 + 𝑏 = 𝑤𝑇  𝑟

𝑤

 𝑤 
       (15) 

Now, it is clear that 
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𝑟 =
𝑤𝑇𝑧+𝑏

 𝑤 
                                                                      (16) 

which is the socalled ―signed distance‖. 

 

3.2. ROSENBLATT’S PERCEPTRON. 

The Perceptron algorithm was invented by Frank Rosenblatt in 1958. The algorithm has a bit of a feed-back quality: it starts with 

an initial guess as to the separating plane's parameters, and then updates that guess when it makes mistakes. Without loss of 

generality, we can take the initial guesses to be 𝑤    =  0, 𝑏 =  0. 

 

perceptron = function(x, y, learning.rate=1) { 

   w = vector(length = ncol(x)) # Initialize the parameters 

   b = 0 

   k = 0 # Keep track of how many mistakes we make 

   R = max(euclidean.norm(x)) 

   made.mistake = TRUE # Initialized so we enter the while loop 

   while (made.mistake) { 

       made.mistake=FALSE # Presume that everything's OK 

       for (i in 1:nrow(x)) { 

           if (y[i] != classify.linear(x[,i],w,b)) { 

              w <- w + learning.rate * y[i]*x[,i] 

              b <- b + learning.rate * y[i]*R^2 

              k <- k+1 

              made.mistake=TRUE # Doesn't matter if already set to TRUE previously 

           } 

        } 

     } 

   return(w=w,b=b,mistakes.made=k) 

} 

 

The perceptron learning algorithm seeks to minimize the total distance of misclassified points from the decision boundary. 

Assume that the classes are labeled +1 and −1. Hence, 𝑥𝑖  is misclassified iff the condition 

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) < 0                                                   (17) 

is satisfied. Denote by 𝑀 the set of misclassified points. Then, the total (unsigned) distance of misclassified points from the 

decision boundary is proportional with 

𝐷 𝑤, 𝑏 = − 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏)𝑖∈𝑀                              (18) 

The perceptron learning algorithm minimizes 𝐷 𝑤, 𝑏  using the stochastic gradient descent. 

The gradient of 𝐷 𝑤, 𝑏  is given by 

𝜕𝐷

𝜕𝑤
= − 𝑦𝑖𝑥𝑖𝑖∈𝑀                                                        (19) 

𝜕𝐷

𝜕𝑏
= − 𝑦𝑖𝑖∈𝑀                                                            (20) 

Instead of stepping in the opposite direction of the gradient, we visit each point of 𝑀 in some random order and update the 

hyperplane in each step, as follows: 
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    𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 + 𝛾𝑦𝑖𝑥𝑖                                                   (21) 

    𝑏𝑛𝑒𝑤 = 𝑏𝑜𝑙𝑑 + 𝛾𝑦𝑖                                                         (22) 

where 𝛾 > 0 is the learning rate. 

Notice that: 

 If the data is linearly separable, then a separating hyperplane is obtained after a finite number of steps. 

 This finite number can be large, especially when the gap between classes is small. 

 The final solution depends on the initialization. 

 If the data are not separable, the algorithm will not converge. 

Other gradient descent methods 

Hypothetically, we would like to select 𝑤, 𝑏 to minimize the training error 

1

𝑛
 𝐼{𝑦𝑖 𝑤

𝑇𝑥𝑖+𝑏 <0}
𝑛
𝑖=1                                                                 (23) 

Unfortunately, the function 𝐼{𝑡<0} is not differentiable. The basic idea is to replace 𝐼{𝑡<0} by a function 𝜑(𝑡) that has qualitatively 

similar properties with 𝐼{𝑡<0} but is differentiable or convex. Then we can minimize  

1

𝑛
 𝜑 𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏  𝑛
𝑖=1                                                              (24) 

by gradient descent. 

The function 𝜑(𝑡) is called loss function. 

As we know, a linear program has the form: 

min
u

𝑐𝑇𝑢 

                                     𝑠. 𝑡.     𝐴𝑢 ≤ 𝑎                                          (25) 

where 𝑢 ∈ 𝑅𝑝 , 𝑐 ∈ 𝑅𝑝 , 𝐴 ∈ 𝑅𝑞×𝑝 , 𝑎 ∈ 𝑅𝑞 . 

It turns out that we can compute a separating hyperplane using linear programming. We can follow these steps. 

First, as we saw above the perceptron criterion is 

𝐷 𝑤, 𝑏 = − 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏)𝑖∈𝑀                                                     (26) 

and we may write 

𝐷 𝑤, 𝑏 =
1

𝑛
 𝜑 𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏  𝑛
𝑖=1                                                 (27) 

where 𝜑 𝑡 = max −𝑡, 0 .  

This is optimized by solving: 
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min
w,b,ξ

1

𝑛
 𝜉𝑖

𝑛

𝑖=1

 

𝑠. 𝑡.   𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ −𝜉𝑖  

                                  𝜉𝑖 ≥ 0                                             (28) 

which is a linear program. But, it can be noticed that in this program 𝑤 = 0, 𝑏 = 0, 𝜉 = 0 is a trivial solution and this is not a 

useful hyperplane. The constraint 𝑤 ≠ 0 is difficult to be included directly into a linear program. So, we’ll proceed as follows: 

If  𝑥1 , 𝑦1 , … ,  𝑥𝑛 , 𝑦𝑛  are linearly separable, then 

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 > 0, ∀𝑖                                                        (29) 

for some 𝑤, 𝑏. 

By rescaling 𝑤, 𝑏, a separating hyperplane satisfies: 

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖                                                         (30) 

The idea now is to minimize the sum of violations of this constraint: 

min
w,b,ξ

1

𝑛
 𝜉𝑖

𝑛

𝑖=1

 

𝑠. 𝑡.   𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖  

                                          𝜉𝑖 ≥ 0                                         (31) 

Let 𝑤∗, 𝑏∗, 𝜉∗ be the optimal solution. The linear program enjoys these properties: 

 A separating hyperplane exists iff   𝜉𝑖
𝑛
𝑖=1 = 0. If one exists, it will be found. 

 If a separating hyperplane does not exist,  𝑤∗, 𝑏∗ is still sensible. 

 𝑤∗ = 0 is not a solution. 

Note that the perceptron corresponds to  

𝜑 𝑡 = max −𝑡, 0                                                                  (32) 

while our modified criterion corresponds to 

𝜑 𝑡 = max −(𝑡 − 1),0                                                        (33) 

We can now express the LP for linear classification in the standard form of a LP. 

The variable is: 

𝑢 =  𝑤1   𝑤2 … 𝑤𝑑   𝑏  𝜉1   𝜉2  … 𝜉𝑛  
𝑇                                          (34) 

The objective function is 𝑐𝑇𝑢 where  
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                                       𝑐 =   0  0 … 0  
1

𝑛
  

1

𝑛
… 

1

𝑛
 
𝑇

                    (35) 

The matrix 𝐴2𝑛×(𝑑+1+𝑛) is  

                    𝐴 =

 
 
 
 
 
 
 
𝑦1𝑥11 … 𝑦1𝑥1𝑑 𝑦1 1 0 … 0

𝑦2𝑥21 … 𝑦2𝑥2𝑑 𝑦2 0 1 … 0
⋮

𝑦𝑛𝑥𝑛1 … 𝑦𝑛𝑥𝑛𝑑 𝑦𝑛 0 0 … 1
0   … 0    0     0  1 0 … 0

⋮
0 …   0    0     0  0 … 0 1  

 
 
 
 
 
 

       (36) 

and  

                           𝑎 =   1  1 … 1  0  0 …  0 𝑇                                  (37) 

where 𝑎 is a (2𝑛 × 1)-column matrix. 

Then, the constraint will be: 

                                              𝐴𝑢 ≤ −𝑎                                           (38) 

 The LP linear classifier was developed by Olvi Mangasarian in 1965. 

The methods described so far for finding a separating hyperplane do not pay attention to which hyperplane is produced. Yet, if 

one separating hyperplane exists then infinitely many do. So, which one should we choose? As we mentioned above 

The margin 𝜌 of a separating hyperplane is the distance from the hyperplane to the closest 𝑥𝑖 . 

𝜌 𝑤, 𝑏 = 𝑚𝑖𝑛
 𝑤𝑇𝑥 + 𝑏 

 𝑤 
 

and  the optimal separating hyperplane is the separating hyperplane whose margin is maximal. 

 𝑤∗, 𝑏∗ = arg max 𝜌 𝑤, 𝑏  

3.3. SVM  

The Support Vector Machine (SVM) is a linear classifier that can be viewed as an extension of the Perceptron developed by 

Rosenblatt. The Perceptron guaranteed that you find a hyperplane if it exists. The SVM finds the maximum margin separating 

hyperplane.  

3.3.1. MARGIN 

We already saw the definition of a margin in the context of the Perceptron. Recall that a hyperplane is defined through 𝑤, 𝑏 as a 

set of points such that  

                       ℋ = {𝑥|𝑤𝑇𝑥 + 𝑏 = 0}                                         (39) 

Let the margin 𝜌 be defined as the distance from the hyperplane to the closest point across both classes. 
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By definition, the margin and hyperplane are scale invariant:  

                      𝜌(𝛽𝑤, 𝛽𝑏) = 𝜌(𝑤, 𝑏), ∀𝛽 ≠ 0                                    (40) 

Note that if the hyperplane is such that 𝜌 is maximized, it must lie right in the middle of the two classes. In other words, 𝜌 must be 

the distance to the closest point within both classes. (If not, you could move the hyperplane towards data points of the class that is 

further away and increase 𝜌, which contradicts that 𝜌 is maximized.) 

3.3.2. MAX MARGIN CLASSIFIER 

We can formulate our search for the maximum margin separating hyperplane as a constrained optimization problem. The 

objective is to maximize the margin under the constraints that all data points must lie on the correct side of the hyperplane: 

max
𝑤,𝑏

𝜌(𝑤, 𝑏)
         

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒  𝑚𝑎𝑟𝑔𝑖𝑛

 

                                       𝑠. 𝑡.   𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 0, ∀𝑖               

𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑛𝑔  𝑕𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒

                   (41) 

If we plug in the definition of 𝜌 we obtain: 

max
𝑤,𝑏

1

 𝑤 2

min
𝑥𝑖∈𝐷

 𝑤𝑇𝑥𝑖 + 𝑏 
                 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒  𝑚𝑎𝑟𝑔𝑖𝑛

 

                                       𝑠. 𝑡.   𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 0, ∀𝑖               

𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑛𝑔  𝑕𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒

                  (42) 

Because the hyperplane is scale invariant, we can fix the scale of 𝑤, 𝑏 anyway we want. Let us  choose it such that 

                     min𝑥∈𝐷 𝑤𝑇𝑥 + 𝑏 = 1                                            (43) 

We can add this rescaling as an equality constraint. Then our objective becomes: 

                max𝑤,𝑏
1

 𝑤 2
∙ 1 = min𝑤,𝑏 𝑤 2 = min𝑤,𝑏 𝑤𝑇𝑤          (44) 

(Where we made use of the fact 𝑓(𝑧) = 𝑧2 is a monotonically increasing function for 𝑧 ≥ 0 and ∥ 𝑤 ∥≥ 0, i.e. the 𝑤 that 

maximizes  𝑤 2 also maximizes 𝑤𝑇𝑤.) 

The new optimization problem becomes: 

min
𝑤,𝑏

𝑤𝑇𝑤 

𝑠. 𝑡.       𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 0, ∀𝑖, 

                                            min𝑖  𝑤
𝑇𝑥𝑖 + 𝑏 = 1                         (45) 

These constraints are still hard to deal with, however, fortunately, we can show that (for the optimal solution) they are equivalent 

to a much simpler formulation.  
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min
𝑤,𝑏

𝑤𝑇𝑤 

                                   𝑠. 𝑡.       𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖                        (46) 

This new formulation is a quadratic optimization problem. The objective is quadratic and the constraints are all linear. We can be 

solve it efficiently with any QCQP (Quadratically Constrained Quadratic Program) solver. It has a unique solution whenever a 

separating hyper plane exists. It also has a nice interpretation: Find the simplest hyperplane (where simpler means smaller 𝑤𝑇𝑤) 

such that all inputs lie at least 1 unit away from the hyperplane on the correct side. 

3.3.3. SUPPORT VECTORS 

For the optimal 𝑤, 𝑏 pair, some training points will have tight constraints, i.e. 

               𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 = 1                                                                  (47) 

 (This must be the case, because if for all training points we had a strict > inequality, it would be possible to scale down both 

parameters 𝑤, 𝑏 until the constraints are tight and obtained an even lower objective value.) We refer to these training points 

as support vectors. Support vectors are special because they are the training points that define the maximum margin of the 

hyperplane to the data set and they therefore determine the shape of the hyperplane. If you were to move one of them and retrain 

the SVM, the resulting hyperplane would change. The opposite is the case for non-support vectors (provided you don't move them 

too much, or they would turn into support vectors themselves). This will become particularly important in the dual formulation 

for Kernel-SVMs. 

3.3.4. SVM WITH SOFT CONSTRAINTS 

If the data is low dimensional it is often the case that there is no separating hyperplane between the two classes. In this case, there 

is no solution to the optimization problems stated above. We can fix this by allowing the constraints to be violated ever so slight 

with the introduction of slack variables: 

min
𝑤,𝑏

𝑤𝑇𝑤 + 𝐶  𝜉𝑖

𝑛

𝑖=1

 

𝑠. 𝑡.       𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , ∀𝑖 

                                              𝜉𝑖 ≥ 0, ∀𝑖                                                  (48) 

The slack variable 𝜉𝑖  allows the input 𝑥𝑖  to be closer to the hyperplane (or even be on the wrong side), but there is a penalty in the 

objective function for such "slack". If 𝐶 is very large, the SVM becomes very strict and tries to get all points to be on the right side 

of the hyperplane. If 𝐶 is very small, the SVM becomes very loose and may "sacrifice" some points to obtain a simpler (i.e. 

lower  𝑤 2
2) solution. 

3.3.5. UNCONSTRAINED FORMULATION 

Let us consider the value of 𝜉𝑖  for the case of 𝐶 ≠ 0. . Because the objective will always try to minimize 𝜉𝑖  as much as possible, 

the equation must hold as an equality and we have: 

𝜉𝑖 = 1 − 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏   𝑖𝑓  𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 < 1 and 𝜉𝑖 = 0  𝑖𝑓   𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1                            (49) 
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This is equivalent to the following closed form:  

                   𝜉𝑖 = max⁡ 1 − 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 , 0                                            (50) 

If we plug this closed form into the objective of our SVM optimization problem, we obtain the following unconstrained version as 

loss function and regularizer:  

            min𝑤,𝑏 𝑤𝑇𝑤 
𝑙2−𝑟𝑒𝑔𝑢𝑙𝑎𝑙𝑖𝑧𝑒𝑟

+ 𝐶  max⁡ 1 − 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 , 0                  

𝑕𝑖𝑛𝑔𝑒 −𝑙𝑜𝑠𝑠

𝑛
𝑖=1            (51) 

 

This formulation allows us to optimize the SVM parameters (𝑤, 𝑏) just like logistic regression (e.g. through gradient descent). 

The only difference is that we have the hinge-loss instead of the logistic loss. (see [20]) 

4. RESULTS 

 

Several years ago, Professor Y. Sergeyev, in a book and in a series of prominent papers [14, 15, 16, 17] has proposed a new 

approach to infinite and infinitesimal numbers. He has introduced a new infinite unit of measure (the numeral grossone, indicated 

by ①) as the number of elements of the set of the natural numbers, showing that it is possible to work successfully with infinite 

and infinitesimal quantities using it to solve many problems in the field of applied and theoretical mathematics, and not only. In 

this new numeral system, there is the possibility to handle infinite and infinitesimal numbers as particular cases of a single 

structure. This offers a new perspective and different approaches to important aspects of mathematics such as sums of series (in 

particular, divergent series), limits, derivatives, etc. 

The new numeral grossone can be introduced by describing its properties (in a similar way as it is done in the past with the 

introduction of 0 to switch from natural to integer numbers). The Infinity Unit Axiom postulate (IUA) [15, 14] is composed of 

three parts: Infinity, Identity, and Divisibility: 

• Infinity. Any finite natural number 𝑛 is less than grossone, i.e., 𝑛 < ①. 

• Identity. The following relationships link ① to the identity elements 0 end 1 

0 ・① =  ①・ 0 =  0, ① − ① =  0, 
①

①
= 1, ①0  =  1, 1① =  1, 0① =  0                                   (52) 

• Divisibility. For any finite natural number 𝑛, the sets 𝑁𝑘,𝑛 , 1 ≤  𝑘 ≤  𝑛, 

𝑁𝑘,𝑛 =  𝑘, 𝑘 +  𝑛, 𝑘 +  2𝑛, 𝑘 +  3𝑛, . . . . , 1 ≤  𝑘 ≤  𝑛, 

 𝑁𝑘,𝑛
𝑛
𝑘=1  =  𝑁                                                                                                                                        (53) 

have the same number of elements indicated by 
①

𝑛
 . 

The axiom above states that the infinite number ①, greater than any finite number, behaves as any natural number with the 

elements 0 and 1. Moreover, the quantities 
①

𝑛
  are integers for any natural 𝑛. This axiom is added to the standard axioms of real 

numbers and, therefore, all standard properties (commutative, associative, existence of inverse, etc.) also apply to ①. Sergeyev 

[16, 17] also defines a new way to express the infinite and infinitesimal numbers using a register similar to traditional positional 

number system, but with base number ①. A number 𝐶  in this new system can be constructed by subdividing it into groups 

corresponding to powers of ① and has the following representation: 

𝐶 =  𝑐𝑝𝑚
①𝑝𝑚  + . . . . + 𝑐𝑝1

①𝑝1  +  𝑐𝑝0
①𝑝0 + 𝑐𝑝−1

①𝑝−1  + . . . . + 𝑐𝑝−𝑘
①𝑝−𝑘  .                                   (54) 

 

where the quantities 𝑐𝑖  (the grossdigits) and 𝑝𝑖  (the grosspowers) are expressed by the traditional numerical system for 

representing finite numbers (for example, floating point numbers). The grosspowers are sorted in descending order: 

𝑝𝑚  >  𝑝𝑚−1  > . . . . >  𝑝1  >  𝑝0  >  𝑝−1  > . . . 𝑝−(𝑘−1)  >  𝑝−𝑘  

with 𝑝0  =  0. 

In this new numeral system, finite numbers are represented by numerals with only one grosspower 𝑝0  =  0. Infinitesimal numbers 

are represented by numeral 𝐶 having only negative finite or infinite grosspowers. The simplest infinitesimal number is ①−1 for 

which 

①−1① =  ① ①−1  =  1                                                                                                                          (55) 
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We note that infinitesimal numbers are not equal to zero. Infinite numbers are expressed by numerals having at least one finite or 

infinite grosspower greater than zero. 

The newly proposed numeral system pays close attention to its numerical aspects and to applications. The Infinity Computer 

proposed by Sergeyev is able to execute computations with infinite, finite, and infinitesimal numbers numerically (not 

symbolically) in a novel framework. 

In the following example we use grossone to solve a problem presented in the literature. (see [18]) 

Two arbitrary points from the iris dataset are selected for analysis, and the optimal hyperplane is calculated. 

Let, first, A(12, 4.8), B( 100, 6.3) be two arbitrary points where x – index in the dataset, y –length of the sepal. 

The point A will be considered negative and  B  positive, thus 𝑦𝐴 = 1 , 𝑦𝐵 = −1 . 

We need to find the optimal separate hyperplane. 

It is known that any hyperplane can be described as:  

𝑤𝑥 + 𝑏 = 0                                                                                                                                                (56) 

where w – normal vector to the hyperplane and 
𝑏

 𝑤 
  - perpendicular distance from the hyperplane to the origin. 

To find  𝑤  and b dual form should be introduced. It contains a quadratic objective function with constraints as follows: 

max𝑎 𝐿𝐷 =  𝑎𝑖
𝐿
𝑖=1 −

1

2
 𝑎𝑖𝑖 ,𝑗 𝑎𝑗 𝑦𝑖𝑦𝑗  𝑥𝑖 , 𝑥𝑗                                                                                               (57) 

if   𝑎𝑖
𝐿
𝑖=1 𝑦𝑖 = 0,   𝑎𝑖 ≥ 0, ∀𝑖. 

After data substitution  

max𝑎 𝐿𝐷 =  𝑎𝑖
𝐿
𝑖=1 −

1

2
 𝑎𝑖𝑖 ,𝑗 𝑎𝑗 𝑦𝑖𝑦𝑗  𝑥𝑖 , 𝑥𝑗  =

𝑎1 + 𝑎2 −
1

2
 𝑎1𝑎1 ∗ 1 ∗ 1 ∗   

12
4.8

 ,  
12
4.8

   + 2 ∗ 𝑎1𝑎2 ∗ 1 ∗  −1 ∗   
12
4.8

 ,  
100
6.3

   + 𝑎2𝑎2 ∗  −1 ∗  −1 ∗   
100
6.3

 ,  
100
6.3

    = 𝑎1 +

𝑎2 −
1

2
  167.04𝑎1

2 − 2460.48𝑎1𝑎2 + 10039.69𝑎2
2                                                                                  (58) 

Using the method proposed in the literature (see [13], Theorem 3.3) we can solve this problem as follows: 

First, we consider the function 𝑓: 

𝑓 = 𝑥1 + 𝑥2 −
1

2
  167.04𝑥1

2 − 2460.48𝑥1𝑥2 + 10039.69𝑥2
2 +

①

2
 𝑥1 − 𝑥2 

2                                          (59) 

which must be minimized 

subject to 𝑥1 − 𝑥2 = 0 

Next, we calculate its partial derivatives and form the following system: 

𝜕𝑓

𝜕𝑥1
= 0 ⟺  −167.04 + ① 𝑥1 +  1230.24 − ① 𝑥2 = −1                                                                         (60)            

𝜕𝑓

𝜕𝑥2
= 0 ⟺  1230.24 − ① 𝑥1 +  −10039.36 + ① 𝑥2 = −1                                                                     (61) 

 

Solving this system of equations, using the properties of grossone, we obtain: 

𝑥1 = 𝑥2 =
2①

7745 .92①
≈

2①

7746①
= 0.00025819                                                                                                   (62) 
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So: 

𝑎1 = 𝑥1 = 0.000258 =
25

96837
 

𝑎2 = 𝑥2 = 0.000258 =
25

96837
 

Next, let us calculate 𝑤 and 𝑏: 

𝑤 =  𝑎𝑖𝑥𝑖𝑦𝑖

𝐿

𝑖=1

=
25

96837
∗ 1 ∗  

12
4.8

 +
25

96837
∗  −1 ∗  

100
6.3

 =  

300

96387
120

96837

 −  

2500

96387
157.5

96837

 =  

2200

96387
37.5

96837

  

𝑏 = 1 −  
25

96837
∗   

12
4.8

 ,  
12
4.8

  −
25

96837
∗   

12
4.8

 ,  
100
6.3

   =
96837

96837
−  

4176

96837
−

30756

96837
 =

96837

96837
+

26580

96837
=

123417

96837
 

The representation of the hyperplane will be: 

                                                𝑤1𝑥 + 𝑤2𝑦 + 𝑏 = 0                                    (63) 

Substituting the numbers, we obtain 

                                                                                −
2200

96837
𝑥 −

37.5

96837
𝑦 +

123417

96837
= 0                            (64)   

Comparing the result of the program and using the SVM of the sklearn library, the following result of the program is given: 

 

 

 

 

𝑤 =   −0.02272067 − 0.00038728   

𝑏 =  1.27450707   
Indices of support vectors =   1   0 ; 

Support vectors  =    100 6.3     12 4.8  ; 

Number of support vectors for each class =  1  1 ; 
Coefficients of the support vector in the decision function =  0.00025819 0.00025819 . 
The results are summarized in the following table: 

 

 
𝒘 Support Vectors (SV) Indices of SV Number of SV Coefficients of SV 

𝑤1 𝑤2 I II I II I II I II 

−0.02272067 −0.00038728 100   6.3 12     4.8 1 0 1 1 0.00025819 0.00025819 

Table I 

The values of 𝑤 and 𝑏 are calculated manually and coincide with those calculated with the help of the program, so the calculations 

 

 

Since its earliest days as a discipline, ML has used many optimization formulations and algorithms. In addition, ML has 

contributed to optimization, stimulating the development of new optimization approaches that address the significant questions 

are correct. Also, since we have only two points in this case, they act as reference vectors, one for each class.

CONCLUSION
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presented by ML applications. This interplay and collaboration continues to deepen, producing a growing literature at the 

intersection of the two fields and being a very attractive subject for many leading researchers, as well. 

Linear classification is a useful tool in ML and data mining. Recently, many research works have developed efficient optimization 

methods to construct linear classifiers and applied them to some large-scale applications. 

Support vector machines (SVMs) are a set of related supervised learning algorithm developed by Vladimir Vapnik in the mid 90's 

for classification and regression. Support vector machines (SVMs) have been successfully applied to a large number of real-world 

applications, such as text categorization and handwritten character recognition. The use of optimization methodologies plays a 

central role in finding solutions of SVMs, in fact the support vector machine (SVM) is the first contact that many optimization 

researchers had with ML, due to its classical formulation as a convex quadratic program — simple in form, though with a 

complicating constraint. Taking into account their importance and their closed relationship with the mathematical programming, 

in this paper, we have described in more details the SVM classifier. We have solved a numerical example from the literature using 

the ML & SVM methods. The use of grossone has significantly simplified its solution. Even this simple example, shows for 

another time the large scale of grossone applications due to its elegance and efficiency. We are sure that there are many other 

problems from ML in which the grossone may be used successfully. So, for future work, we recommend solving the same 

problem, with respect to the design of new evolutionary, genetic and recommendation models. There are numerous publications 

on this research area. The interested reader may consult, among others, the references given in this paper. (See [21]-[31]).  
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