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ABSTRACT: The equality of covariance matrices is an essential assumption in means and discriminant analyses for high-

dimensional data. The performance of tests for covariance matrices may vary substantially depending on the covariance structure, 

so using inappropriate methods to verify the assumption will result in worse performance. The purpose of this study is to assess and 

compare the performance of three tests for two-sample high-dimensional covariance matrices: Schott’s (2007), Srivastava and 

Yanagihara’s (2010), and Li and Chen's (2012) under various covariance structures. A simulation study was conducted when the 

covariance structures were spherical, compound symmetric, block-diagonal, and first-order autoregressive with homogenous 

variances. The results show that Li and Chen's test outperforms the others with a sample size of at least 10 under particular covariance 

structures. When the number of variables is increased with a fixed sample size, Li and Chen's test still performs well, whereas 

Schott's performance deteriorates. Some recommendations for selecting appropriate tests are also provided in this paper. 
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I. INTRODUCTION 

As measurement technology has advanced, high dimensional data have become more common in a variety of fields, including medical 

science, genomics, and economics. DNA microarrays, a powerful technology for studying gene expression on a genomic scale, are 

examples of high dimensional data in medical science since they involve thousands of variables of gene expression data with a very 

small sample size. In Alon et al. [1], the number of variables reached 6,500 while the sample sizes of the first and the second groups 

were 22 and 40, respectively, and despite the classification method being applied to reduce them into groups, there were still 2,000 

variables left. The analytical methods used to deal with high-dimensional data differ from those used for low-dimensional data. When 

the number of variables exceeds the sample size, as in high dimensional data, statistical methods become very complicated, and in 

many cases, effective methods used in univariate and multivariate analyses are inapplicable. Two prominent instances are the 

Hotelling's test [2] for comparing two mean vectors and the likelihood ratio test for comparing two or more covariance matrices.  

In means and discriminant analyses, testing the equality of two covariance matrices is an important method for data analysts to ensure 

that the data satisfy the assumption of homogeneous covariance matrices. However, methods for dealing with high-dimensional data 

are still limited and are dependent on covariance structure, the number of variables, and sample size. Among these were Schott [3], 

Srivastava and Yanagihara [4], Li and Chen [5], and Srivastava, Yanagihara, and Kubokawa [6], the latter of which was modified 

from Schott [3]. The goal of this study is to examine and compare the performance of three tests established by Schott [3], Srivastava 

and Yanagihara [4], and Li and Chen [5] for equality of two covariance matrices in high dimensional data under various covariance 

structures.  

 

II. TESTS FOR COVARIANCE MATRICES IN HIGH-DIMENSIONAL DATA 

Let  ijx  be distributed as  iid ( , ) ,p i iN μ Σ  1,2; 1,2,..., ii j n    from population i and the two samples are assumed to be 

independent. In this study, we considered the case of high-dimensional data which is ,p n 1 2:n n n 2.  One important 

obstacle that makes most statistical methods in multivariate cases inapplicable in high-dimension cases is the singularity of the high-

dimensional sample covariance matrix. As a result, existing tests of high-dimensional covariance matrices such as those presented 

by Schott [3], Srivastava and Yanagihara [4], Li and Chen [5], and Cai, Liu and Xia [7] were developed without using the inverse 
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of the sample covariance matrix. Additionally, since the test proposed by Cai et al. [7] was based on a sparse matrix, which is 

narrower than the previous three techniques, it was not included in this study.  

The hypothesis testing problem in this study is   :H 1 2Σ Σ   against   :K 1 2Σ Σ   . 

The sample mean vectors are    
1

1 in

jin 

 i ijx x   , 1,2i  ,   

and the sample covariance matrices are    
1

( )( )
1

in

i
jin

 


ij i ij iS x - x x - x  , 1,2i   . 

Let 1i in     and pS  

i i
i

i
i






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S

 ,  1,2i   . 

A. Schott’s Test 

The test presented by Schott [3] is based on the square of the Frobenius norm 
2

1 2( )tr   and the unbiased and consistent 

estimators of  ( ) /itr p and 
2( ) /itr p , 1,2.i   

The Schott’s test statistic, denoted by ST , is  
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Under the null hypothesis :H 1 2Σ Σ   , the statistic (0,1)
L

ST N  when  1 2( , , )p n n   and  / i ip n c (0, ) , 

1,2i  .  The null hypothesis would be rejected when ST > 1Z  , where 1(Z )P Z     and Z  is a standard normal random 

variable. 

The ST  test  does not perform well when the data is right- skewed, particularly when the number of variables is increased while the 

sample size remains constant [6]. 

B. Srivastava and Yanagihara’s Test 

The test developed by Srivastava and Yanagihara [4] is based on the consistent estimator of the difference 

2 2
1 2

1 22 2
1 2

( ) ( )

( ) ( )

tr tr

tr tr
 

 
  

 
 . Under the null hypothesis :H 1 2Σ Σ , the term 1 2 0   .  

The test statistic, denoted by  SYT , is 
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 where the constants are  

 
3 2

0 ( 6 21 18)c n n n n    , 
2
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When ( , )p n  , the statistic (0,1)
L

SYT N . The null hypothesis would be rejected when SYT > 1Z  , where 

1(Z )P Z       and  Z  is a standard normal random variable. In addition, when  
2 2

SYQ T , then  
2 2

1

L

Q  , where 
2
1   

is the chi-squared distribution with 1 degree of freedom. The null hypothesis would be rejected when  
2Q > 

2
1, 1   , where 

2 2
1, 1( )P      . When the number of variables was 200, it was shown that the test statistic 

2Q  performed well [4].  

C. Li and Chen’s Test  

The test developed by Li and Chen [5] is based on unbiased and consistent estimator of  
2

1 2( )tr   and Schott's [3] method.   

The test statistic, denoted by LCT  , is 
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Under the null hypothesis, the statistic (0,1)
L

LCT N  when 1 2( , , )p n n  . The null hypothesis would be rejected when 

LCT   >  1Z  , where 1(Z )P Z     and Z is a standard normal random variable.   

To obtain the value of the test statistic  LCT , it needs to expand the terms in the summations to the order of  
4n ; this complicates 

the calculation and takes a long time if the sample sizes are very large [5]. 

 

III. SIMULATION PROCEDURE 

To evaluate the performance of the tests created by Schott [3], Srivastava and Yanagihara [4] and Li and Chen [5], four structures 

of covariance matrices: sphericity, compound symmetry (CS), block diagonal structure (BD), and first-order autoregressive structure 

with homogenous variances, or AR(1), were formed in a simulation study. The simulation study was conducted using R version 

4.1.0.  Let the first random sample 
11 1 11 2 nx ,x , ..., x   come from a p-variate normal population  1( , )pN μ Σ  and the other random 

sample 
221 22 2nx ,x , ..., x , being independent of the first sample, come from 2( , )pN μ Σ , where   ,p n 1:n n  2n 2   

and 1 2n n  . We set  1 2Σ Σ  in the null hypothesis, and in the alternative, we set the first population covariance matrix  1Σ  

to be the same as in the null hypothesis, but the second population covariance matrix 2Σ  to be different from 1Σ   but with the 

same structure as follows: 

A. Sphericity  

Under the null hypothesis, set  ,i pΣ I 1,2i   and under the alternative hypothesis, set 2 3 pΣ I . 

B. CS  

Under the null hypothesis, set iΣ 0.5 0.5( )p p p I 1 1 , 1,2i   and 1p  is a vector of 1’s. Under the alternative 

hypothesis, set 2Σ 0.9 0.1( )p p p I 1 1 . 

C. BD  

Under the null hypothesis, set i Σ 1 2 ( 1)( 1)( , ,..., , )m m mmdiag  B B B B , 1,2i  , where 0.5j pB I 0.5( ),p p 1 1  

1,2,...,j m   , where the first  1m  blocks contain block size of 3, so  3( 1)p m m   . Under the alternative hypothesis, 

set 2 Σ 1 2 ( 1)( 1)( , ,..., , )m m mmdiag  B B B B , where jB 0.9 0.1( )p p p I 1 1 1,2,...,j m , where the first  1m  

blocks contain block size of 3. 
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D. AR(1) 

 Under the null hypothesis, set  k Σ ( ),
i j

ij 


1,2k  , 0.5  , and (2,3)ij U  , where  (2,3)U  is a continuous 

uniform distribution on the interval [a,b]. Under the alternative hypothesis, set 2 Σ ( ),
i j

ij 


0.5    and (5,6)ij U . 

The sample sizes ( )in were set as 1 2n n   and the number of variables ( )p was set as  20,30,40,50,100p   for 5in  ;  

40,60,80p  100, 200  for 10in  ;  60,p  80,100,150,200  for 15in  ; and 80,p  100,150,200,400  for 

20in  .  

For each condition, 1,000 samples were generated at a nominal significance level of 0.05. The performance of the tests was assessed 

using the attained significance level (ASL) and empirical power. Under the null hypothesis, the ASL was calculated as the proportion 

of the number of times the calculated test statistics fell inside the critical region in 1,000 times. The ASL was evaluated using 

Bradley's liberal criterion [8]. When the ASLs of a test fall within the interval [0.04, 0.06], the test was regarded as acceptable. To 

obtain the empirical power, the simulation study was conducted under the alternative hypothesis of unequal covariance matrices but 

with the same covariance structure.  

 

IV. RESULTS 

The simulation results were presented in terms of the attained significance level (ASL) and empirical power under four covariance 

matrix structures: sphericity, CS, BD, and AR(1), as  shown in Tables 1-4, respectively.  

 

Table 1. ASL and Empirical power of the tests with spherical covariance structure at nominal level 0.05  

ni p ASL Empirical power  

  TS TSY TLC TS TSY TLC 

5 20 0.0350 0.0120 0.0240 0.0450 0.0070 0.1840 
  30 0.0390 0.0050 0.0290 0.0180 0.0020 0.1670 

  40 0.0330 0.0030 0.0310 0.0040 0.0010 0.1550 

  50 0.0380 0.0030 0.0310 0.0030 0.0000 0.1740 
  100 0.0330 0.0000 0.0180 0.0000 0.0000 0.1620 

10 40 0.0430 0.0270 0.0410 0.3940 0.0140 0.6370 
  60 0.0520 0.0280 0.0540 0.2310 0.0070 0.6150 

  80 0.0400 0.0180 0.0370 0.1270 0.0010 0.6390 
 100 0.0580 0.0090 0.0540 0.0770 0.0000 0.6270 

  200 0.0370 0.0090 0.0380 0.0010 0.0000 0.6380 

15 60 0.0510 0.0260 0.0470 0.7990 0.0130 0.9310 
  80 0.0510 0.0280 0.0400 0.7100 0.0100 0.9210 

  100 0.0470 0.0390 0.0450 0.6460 0.0070 0.9350 
 150 0.0560 0.0240 0.0660 0.3827 0.0002 0.9320 

  200 0.0600 0.0240 0.0590 0.1838 0.0000 0.9370 

20 80 0.0520 0.0440 0.0510 0.9470 0.0100 0.9970 
  100 0.0570 0.0380 0.0560 0.9640 0.0060 0.9980 

  150 0.0370 0.0300 0.0390 0.9000 0.0040 0.9960 
 200 0.0500 0.0320 0.0480 0.8230 0.0010 0.9940 

  400 0.0460 0.0130 0.0390 0.1690 0.0000 0.9970 
 

Table 1 shows that when the sample size is at least 10, both the tests TS and TLC are acceptable under the spherical covariance 

structure, while TSY is not. When the number of variables is increased while the sample size remains constant, the test TLC still 

performs better than TS considering from the empirical power of the tests. Overall, it can be concluded that the test TLC outperformed 

the others when the covariance structure is spherical. 
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Table 2. ASL and Empirical power of the tests with compound symmetric covariance structure at nominal level 0.05 

ni p ASL Empirical power  

  TS TSY TLC TS TSY TLC 

5 20 0.0780 0.1250 0.0600 0.2260 0.4900 0.1520 

 30 0.0630 0.1290 0.0530 0.2500 0.6090 0.1970 

 40 0.0800 0.1470 0.0640 0.2810 0.6380 0.2180 

 50 0.0650 0.1280 0.0610 0.2700 0.6580 0.2260 

 100 0.0710 0.1570 0.0600 0.3320 0.7080 0.2540 

10 40 0.0000 0.0000 0.0000 0.6220 0.9260 0.5890 

 60 0.0820 0.1160 0.0840 0.6460 0.9470 0.6160 

 80 0.0400 0.0180 0.0370 0.6670 0.9490 0.6490 

 100 0.0900 0.1470 0.0870 0.6990 0.9620 0.6820 

 200 0.0380 0.0070 0.0480 0.7080 0.9640 0.6387 

15 60 0.1060 0.0960 0.0970 0.8630 0.9990 0.8470 

 80 0.0920 0.0940 0.0880 0.8530 0.9900 0.8490 

 100 0.0980 0.0914 0.0990 0.8770 0.9950 0.8720 

 150 0.1010 0.0820 0.1020 0.8890 0.9950 0.8810 

 200 0.0910 0.0750 0.0890 0.8790 0.9920 0.8710 

20 80 0.1000 0.0740 0.0870 0.9360 0.9980 0.9320 

 100 0.0920 0.0650 0.0850 0.9510 1.0000 0.9480 

 150 0.0990 0.0830 0.0990 0.9550 1.0000 0.9440 

 200 0.0950 0.0870 0.0980 0.9510 1.0000 0.9500 

 400 0.0400 0.0230 0.0360 0.9600 1.0000 0.9600 

 

Table 3. ASL and Empirical power of the tests with block diagonal covariance structure at nominal level 0.05 

ni p ASL Empirical power 

  TS TSY TLC TS TSY TLC 

5 20 0.0510 0.0200 0.0390 0.0760 0.0460 0.0580 

 30 0.0350 0.0050 0.0290 0.0600 0.0420 0.0440 

 40 0.0410 0.0080 0.0330 0.0590 0.0330 0.0390 

 50 0.0440 0.0060 0.0270 0.0660 0.0210 0.0440 

 100 0.0450 0.0050 0.0270 0.0720 0.0090 0.0580 

10 40 0.0560 0.0410 0.0530 0.1420 0.2670 0.1400 

 60 0.0420 0.0320 0.0410 0.1540 0.2860 0.1400 

 80 0.0490 0.0150 0.0430 0.1440 0.2510 0.1280 

 100 0.0340 0.0240 0.0420 0.1500 0.2200 0.1340 

 200 0.0550 0.0130 0.0490 0.1470 0.1420 0.1330 

15 60 0.0480 0.0460 0.0430 0.2360 0.5990 0.2150 

 80 0.0570 0.0400 0.0500 0.2470 0.5860 0.2390 

 100 0.0550 0.0350 0.0590 0.2210 0.5590 0.2150 

 150 0.0440 0.0230 0.0360 0.2380 0.5260 0.2150 

 200 0.0380 0.0290 0.0350 0.2460 0.4770 0.2190 

20 80 0.0490 0.0390 0.0430 0.3560 0.8030 0.3420 

 100 0.0480 0.0380 0.0470 0.3370 0.8170 0.3240 

 150 0.0680 0.0290 0.0610 0.3820 0.8050 0.3490 

 200 0.0580 0.0340 0.0490 0.3620 0.7830 0.3420 

 400 0.0500 0.0230 0.0480 0.3580 0.7680 0.3310 
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Table 2 shows that all three tests in the study, TS, TSY, and TLC, performed unacceptably under the compound symmetric covariance 

matrix. 

Table 3 illustrates that the statistic TS performs acceptably, and the test TLC performs well with the sample size of at least 10, but 

the test TSY does not.  

 

Table 4. ASL and Empirical power of the tests with covariance structure of AR(1) at nominal level 0.05 

ni p 
ASL Empirical power 

  TS TSY TLC TS TSY TLC 

5 20 0.0450 0.0190 0.0430 0.0740 0.0310 0.0990 

 30 0.0450 0.0120 0.0350 0.0470 0.0070 0.0970 

 40 0.0390 0.0120 0.0310 0.0320 0.0080 0.0980 

 50 0.0530 0.0070 0.0410 0.0240 0.0090 0.0840 

 100 0.0420 0.0010 0.0360 0.0010 0.0010 0.0800 

10 40 0.0580 0.0270 0.0510 0.2490 0.0420 0.3070 

 60 0.0430 0.0360 0.0410 0.2160 0.0270 0.3160 

 80 0.0630 0.0400 0.0620 0.2020 0.0200 0.3490 

 100 0.0410 0.0130 0.0460 0.1360 0.0120 0.3180 

 200 0.0370 0.0150 0.0400 0.0250 0.0020 0.3320 

15 60 0.0640 0.0380 0.0590 0.4540 0.0380 0.5050 

 80 0.0600 0.0370 0.0500 0.4940 0.0320 0.6050 

 100 0.0700 0.0350 0.0630 0.4270 0.0360 0.5730 

 150 0.0410 0.0310 0.0360 0.3470 0.0110 0.5850 

 200 0.0530 0.0250 0.0510 0.2760 0.0050 0.6070 

20 80 0.0650 0.0440 0.0590 0.7560 0.0330 0.8000 

 100 0.0580 0.0480 0.0570 0.7120 0.0380 0.7710 

 150 0.0580 0.0360 0.0580 0.6790 0.0190 0.7910 

 200 0.0470 0.0340 0.0460 0.6190 0.0150 0.7960 

 400 0.0500 0.0150 0.0440 0.2650 0.0010 0.7480 

 

It can be seen, from Table 4, that under the covariance structure of AR(1), the tests TS and TLC perform well, whereas TSY performs 

poorly. In addition, when the number of variables (p) is increased with a fixed sample size, the test TLC performs slightly better than 

TS. 

 

V. CONCLUSION AND DISCUSSION 

The purpose of this study is to assess and compare the performance of tests for equality of covariance matrices in high-dimensional 

data. The tests considered in this study were Schott’s [3], Srivastava and Yanagihara’s [4], and Li and Chen’s [5] and the simulation 

study was conducted under four structures of covariance matrices: sphericity, compound symmetry, block diagonal structure, and 

first-order autoregressive structure with homogenous variances, or AR(1). 

Conclusion 

When the data are multivariate normal distributed with the covariance matrix structures of sphericity, block diagonal matrix, or 

AR(1), the tests presented by Schott [3], Srivastava and Yanagihara [4], and Li and Chen [5] perform differently. Overall, Li and 

Chen's test outperforms the others; actually, it is slightly better than Schott's test. For sample sizes of at least 10, Li and Chen’s and 

Schott’s tests can be used effectively. When the number of variables is increased with a fixed sample size, Li and Chen's test 

performs better, while Schott's test performs worse. In addition, when the covariance matrix structure is compound symmetry, none 

of the three tests in this study performs well. To test the equality of covariance matrices in high-dimensional data, the structures of 
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the covariance matrix should be examined first, which can be done by considering the pattern of the sample covariance matrix. 

When the covariance matrix structure is spherical, block-diagonal, or first-order regressive, the guidelines are: 

Case 1:  When the sample size (ni) is at least 10 and the number of variables (p) is substantially greater than the sample size, 

such as p > 7ni, Li and Chen’s test should be applied. 

Case 2: When the sample size (ni) is at least 10 and the number of variables (p) is not substantially greater than the sample 

size, such as ni < p < 7ni, either Li and Chen’s or Schott’s test should be used. 

Case 3: When the sample size is smaller than 10, Schott’s test is recommended. 

Discussion 

The findings from this study collaborated by Li and Chen [5], which a simulation study was conducted under spherical and block-

diagonal covariance structures, and it was found that the ASLs were close to the nominal significance level. From the results, it was 

shown that the test by Srivastava and Yanagihara [4] did not perform well under all structures of covariance matrices in this study, 

the test might be only suitable for particular covariance structures. For instance, the covariance structure, determined by Srivastava 

and Yanagihara [4], was that under the null hypothesis of 1 2 0  Σ Σ D D , where D   was a diagonal matrix and 0 ( ),ij

ij
0.1

( 1) (0.4)
i ji j   , and under the alternative hypothesis of 2Σ 2 D D , where 2 ( ),ij ij

0.1

( 1) (0.8)
i ji j    and 1Σ   was the same as in the null hypothesis. This result leads to a suggestion for developing a new test, 

i.e. if a developed test performs acceptably with a variety of covariance structures, analysts and researchers will find it easier to 

select a test for equality of covariance matrices. 
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