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ABSTRACT: In many manufacturing problems, multi-objective optimizations are representative models, as objectives are 

considered a conflict with one another. In real-life applications, optimizing a specific solution concerning one objective may end up 

in unacceptable results concerning the other objectives. Many Manufacturing companies operate under uncertainties and this affects 

the system performance. Stochastic product demand is one of the challenges faced by manufacturing companies and often affects 

the manufacturing system’s performance and decision-making. Making the proper decisions regarding manufacturing lot-sizing 

problems is critical for any manufacturer because it makes the firm compete within the market. In this paper, Markov chains in 

conjunction with stochastic goal programming were used to develop an optimization model for the manufacturing lot size. The over-

achievement or under-achievement of the manufacturing lot size was determined by defining the goal constraints, deviation 

variables, priorities, and objective function. The different states of demand for the product with stochastic demand were represented 

by states of a Markov chain. Using the applied mathematics solver in MATLAB TM, the optimization model was then solved, 

determining the quantity of product to be manufactured in a given quarter of the year as demand changes from one state to another. 
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1. INTRODUCTION 

Manufacturing companies experience a rapid and growing change where developments like customer orientation, globalization, and 

increasing market dynamics have led to a shift in both manufacturing and managerial principles which require more flexibility and 

effectiveness [1]. Many manufacturing companies operate under uncertainties [2] and this affects the system performance hence the 

ultimate decision on utilizing a production system at the initial stages [3]. Manufacturing companies are continuously trying to find 

efficiency to beat the challenges related to the market dynamics. Stochastic product demand is one of the important factors that 

affect the manufacturing system’s performance. Practically, stochastic product demand is more realistic than other demand types, 

like constant or functions [4]. Understanding these uncertainties and their impacts (which can make it difficult to predict 

performance) when assessing the risk associated with a decision, are of major concern [5]. Having more orders, more different 

products, enlargement of factories, and increased number and size of workshops, have all led to more complications in production 

planning making the ordinary methods of optimization not able to resolve them [1]. Production planning is the pillar of any 

manufacturing operation, with the key purpose of determining the number of products to be manufactured considering the level of 

inventory to be shifted from one period to another to lessen both the overall costs of production and the inventory, meeting the 

customers’ demand [6].  

Making the proper decisions about the manufacturing lot size is incredibly important because it directly affects the system 

performance and productivity [7] and this is often key for any manufacturing firm that wishes to compete within the Market. Lot 

sizing problems have gotten an immediate effect on the system performance and productivity. Manufacturing Lot sizing is 

determining the amount of a given product that has to be manufactured in a specified period. Every production plan has got the main 

problem of determining the manufacturing lot size for every product. To own efficient production planning, lot allocation issues 

must be solved centered on the demand that has to be achieved and also the availability of inventory stock minimizing production 

costs by determining the optimal production quantity [8]. The smaller the manufacturing lot size, the less the holding cost but raises 

the ordering cost whereas the larger the manufacturing lot size, the more the holding cost but reducing the ordering cost. Based on 
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the concepts of lean production, it's preferable to have a smaller lot size because it prevents the buildup of inventory which comes 

with management and holding costs. The lot size recommended by a mathematical manufacturing lot size model would be the most 

effective because it accounts for the tradeoff between the costs involved [7]. Optimization is the process of finding (activity of 

selecting [9]) the simplest possible solution to a given problem by examining several alternatives (assessed after a predefined 

criterion) [10] and maybe done by adjusting the inputs to or characteristics of a device, mathematical process, or experiment to 

determine the minimum or maximum output [11]. The optimization problem contains three basic parameters that must be 

considered, that is, the objective function, a collection of variables, and a collection of constraints [12]. The objective of the 

optimization model depends on certain characteristics of the system, called variables or unknowns to determine the values of those 

variables that optimize the objective function, even though these variables are often restricted, or constrained in one way or the 

other. Brahimi et al. grouped optimization problems into four categories: process planning, layout design, re-configurability and 

planning, and, scheduling. In the beginning multi-objective optimization originally developed from areas including economic 

equilibrium and welfare theories, game theories, and pure mathematics. Consequently, many terms and fundamental ideas stem 

from these fields [13]. A realistic result to a multi-objective problem is to examine a collection of solutions, each satisfying the 

objectives at a satisfactory level without being controlled by another solution. Many, or maybe most, real engineering problems do 

have multiple objectives, that is, minimize cost, maximize performance, maximize reliability, and many others, of which are difficult 

but realistic problems [14]. The solution of multi-objective optimization (MOO) problems differs from single-objective optimization 

problems because there's no global optimal solution in an exceedingly mathematical sense, due to the contradictory nature of the set 

of objectives involved; that's, a result that minimizes all objectives at the same time doesn't exist [15]. Manufacturing companies 

must have the flexibility to regulate scalable production capacities and to respond rapidly to market demands making planning and 

scheduling complex in such a dynamic environment [16]. Markov chain is a powerful mathematical tool that's extensively 

accustomed to capturing the stochastic process of systems transitioning among different states [17]. Markov chains may be applied 

in modeling and performance evaluation as manufacturing systems show any unplanned behavior relating to breakdowns, unplanned 

time to process a component, and many others [18]. To tackle uncertainties in real-world manufacturing systems, goal programming 

and stochastic analysis must be put into the whole structure. Stochastic Goal Programming is a multi-criteria decision support model 

that provides “satisficing” solutions to a linear system under an uncertainty case from the normally expected utility viewpoint [19], 

[20].  

Because many real-world optimization problems have got several inaccurate information estimates & goals and conflicting criteria, 

the stochastic goal programming method suggests an analytical structure aid in modeling and solving such problems. Stochastic 

goal programming can cope with the inherent uncertainty and has been applied in several fields including Portfolio selection, project 

selection, resource allocation, Healthcare management, transportation, marketing [21], cash management [22], wealth management 

[23], economic development, energy consumption, workforce allocation, and greenhouse gas emissions [24], forest planning [25]. 

Little applications of stochastic goal programming in production planning in manufacturing systems are observed hence the 

necessity for multi-objective optimization of the manufacturing lot size under stochastic demand. This may be considered as a 

suggestion for production planners and practitioners accustomed to solving specific decision-making problems (optimal 

manufacturing lot size). Manufacturing companies will minimize overproduction when demand is low or underproduction when 

demand is high. As a result of fluctuations and uncertainties in demand, manufacturing companies are always challenged with 

determining optimal manufacturing lot sizes in production planning systems. Manufacturing companies are continuously searching 

for efficiency to beat the challenges related to the market dynamics. It's therefore important that these uncertain parameters be 

considered within the production planning process when developing a strong production plan because when neglected, production 

efficiency and system performance are affected [26]. Centering on external demands, manufacturing industries form their production 

plans having the principal goal of establishing the number (lot size) of products that can be produced for each period but meeting 

the demand and minimizing total costs [27]. In production planning, making the proper decisions about the lot size is extremely 

important because it directly affects the system performance and productivity [7] and this is often key for any manufacturing firm 

that desires to compete on market. As this is often complex moreover as important, it's been highly studied although, there's still a 

niche about showing the contributions to clarify the suitability of these methods used concerning each quite underlying 

manufacturing environment (regarding variations in demand and peaks of seasonality) [28]. Therefore this study aimed toward the 
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development of a multi-objective optimization model for the manufacturing lot size under stochastic demand, establishing the over-

achievement or underachievement of the manufacturing lot size priorities desired. 

 

2. MATHEMATICAL MODEL FORMULATION 

A case of a manufacturing company whose products have got stochastic demand was considered. The demand for these products 

during each period over a finite fixed planning horizon was described as either favorable or unfavorable. The Markov chain approach 

([29], [30], [31], [32], [1]) together with stochastic goal programming ([20], [33], [21], [34], [25], [22]) was adopted and also the 

states of a Markov chain represent possible states of demand for the finished products with the notations shown in Table 1. 

 

Table 1: Key notations used in the Markov model 

𝑖, 𝑗  Set of states of demand 𝑀 Manufacturing lot-size 

𝐹 Favorable demand 𝑋𝑖𝑗 (𝑝, 𝑞) Quantity of product p to be 

manufactured in quarter q 

𝑈 Unfavorable demand  𝑁 Customer matrix 

𝑄 Demand transition matrix 𝐶𝑝 Unit production cost 

𝑝 Product 𝐶ℎ Unit holding cost 

𝑞 A quarter of the year 𝐶𝑠 Unit shortage cost 

𝐹𝐹, 𝐹𝑈, 𝑈𝐹, 𝑈𝑈 State transitions 𝐷 Demand matrix 

𝑍 Value of the objective function 𝑉 Inventory matrix 

𝑃𝑘 Preemptive priority of the kth goal 𝐶 Production-Inventory cost matrix 

𝑑𝑘
+ Over achievement of the kth goal 𝐵 Beginning Inventory 

𝑑𝑘
− Under achievement of the kth goal 𝐸 Ending Inventory 

 

Average on-hand inventory, 𝑉 = (𝐵 + 𝐸) 2⁄        (1) 

 

Consider the customer matrix: 

𝑁(𝑝, 𝑞) = [
𝑁𝐹𝐹(𝑝, 𝑞) 𝑁𝐹𝑈(𝑝, 𝑞)

𝑁𝑈𝐹(𝑝, 𝑞) 𝑁𝑈𝑈(𝑝, 𝑞)
]       (2) 

2.1 Demand transition probability 

As demand changes from state i to ievement state j for 𝑖, 𝑗 ∈ {𝐹, 𝑈}, the associated demand transition probabilities are calculated as: 

𝑄𝑖𝑗(𝑝, 𝑞) =
𝑁𝑖𝑗(𝑝,𝑞)

𝑁𝑖𝑓(𝑝,𝑞)+𝑁𝑖𝑢(𝑝,𝑞)
        (3) 

This yields the demand transition matrix: 

𝑄(𝑝, 𝑞) =
𝑭 𝑼

𝑭
𝑼

(
𝑄𝐹𝐹(𝑝, 𝑞) 𝑄𝐹𝑈(𝑝, 𝑞)

𝑄𝑈𝐹(𝑝, 𝑞) 𝑄𝑈𝑈(𝑝, 𝑞)
)
      (4) 

Then the demand matrix, the inventory matrix and the production-inventory cost matrix. 

Demand matrix; 

𝐷(𝐴, 1) =  
𝑭 𝑼

𝑭
𝑼

(
𝐷𝐹𝐹(𝐴, 1) 𝐷𝐹𝑈(𝐴, 1)

𝐷𝑈𝐹(𝐴, 1) 𝐷𝑈𝑈(𝐴, 1)
)
       (5) 

Inventory matrix; 

𝑉(𝐴, 1) =  
𝑭 𝑼

𝑭
𝑼

(
𝑉𝐹𝐹(𝐴, 1) 𝑉𝐹𝑈(𝐴, 1)

𝑉𝑈𝐹(𝐴, 1) 𝑉𝑈𝑈(𝐴, 1)
)
       (6) 

 

Production-inventory cost matrix; 
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When demand outweighs the amount produced then, 

𝐶(𝑝, 𝑞) =

[
 
 
 
 
𝐶𝑝

+
𝐶ℎ

+
𝐶𝑠 ]

 
 
 
 

[𝐷(𝑝, 𝑞) −  𝑉(𝑝, 𝑞)]       (7) 

Similarly, when the demand is less than the amount produced then, 

𝐶(𝑝, 𝑞) = 𝐶ℎ[ 𝑉(𝑝, 𝑞) − 𝐷(𝑝, 𝑞)]       (8) 

Hence, as demand changes from state i to state j (𝑖, 𝑗 ∈ {𝐹, 𝑈}) 

𝐶(𝑝, 𝑞) =  
𝑭 𝑼

𝑭
𝑼

(
𝐶𝐹𝐹(𝑝, 𝑞) 𝐶𝐹𝑈(𝑝, 𝑞)

𝐶𝑈𝐹(𝑝, 𝑞) 𝐶𝑈𝑈(𝑝, 𝑞)
)
       (9) 

Where 𝐶(𝑝, 𝑞) = production-inventory cost matrix. 

 

2.2 Expected demand, inventory, production-inventory costs, and manufacturing lot-size 

Expected demand 

Favorable Demand 𝐸[𝐷𝐹(𝑝, 𝑞)] = 𝑄𝐹𝐹(𝑝, 𝑞)𝐷𝐹𝐹(𝑝, 𝑞) + 𝑄𝐹𝑈(𝑝, 𝑞)𝐷𝐹𝑈(𝑝, 𝑞)  (10) 

Unfavorable Demand 𝐸[𝐷𝑈(𝑝, 𝑞)] = 𝑄𝑈𝐹(𝑝, 𝑞)𝐷𝑈𝐹(𝑝, 𝑞) + 𝑄𝑈𝑈(𝑝, 𝑞)𝐷𝑈𝑈(𝑝, 𝑞) (11) 

 

Expected inventory 

Favorable Demand 𝐸[𝑉𝐹(𝑝, 𝑞)] = 𝑄𝐹𝐹(𝑝, 𝑞)𝑉𝐹𝐹(𝑝, 𝑞) + 𝑄𝐹𝑈(𝑝, 𝑞)𝑉𝐹𝑈(𝑝, 𝑞)  (12) 

Unfavorable Demand 𝐸[𝑉𝑈(𝑝, 𝑞)] = 𝑄𝐹𝑈(𝑝, 𝑞)𝑉𝑈𝐹(𝑝, 𝑞) + 𝑄𝑈𝑈(𝑝, 𝑞)𝑉𝑈𝑈(𝑝, 𝑞)  (13) 

 

Expected production-inventory costs 

Favorable Demand 𝐸[𝐶𝐹(𝑝, 𝑞)] = 𝑄𝐹𝐹(𝑝, 𝑞)𝐶𝐹𝐹(𝑝, 𝑞) + 𝑄𝐹𝑈(𝑝, 𝑞)𝐶𝐹𝑈(𝑝, 𝑞)  (14) 

Unfavorable Demand 𝐸[𝐶𝑈(𝑝, 𝑞)] = 𝑄𝑈𝐹(𝑝, 𝑞)𝐶𝑈𝐹(𝑝, 𝑞) + 𝑄𝑈𝑈(𝑝, 𝑞)𝐶𝑈𝑈(𝑝, 𝑞)  (15) 

 

Expected manufacturing lot-size 

Favorable demand 

𝐸[𝑀𝐹(𝑝, 𝑞)] = {

   𝐸[𝐷𝐹(𝑝, 𝑞)] − 𝐸[𝑉𝐹(𝑝, 𝑞)]     𝑖𝑓 𝐸[𝐷𝐹(𝑝, 𝑞)] > 𝐸[𝑉𝐹(𝑝, 𝑞)]

0                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (16) 

Unfavorable demand 

𝐸[𝑀𝑈(𝑝, 𝑞)] = {

   𝐸[𝐷𝑈(𝑝, 𝑞)] − 𝐸[𝑉𝑈(𝑝, 𝑞)]     𝑖𝑓 𝐸[𝐷𝑈(𝑝, 𝑞)] > 𝐸[𝑉𝑈(𝑝, 𝑞)]

0                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (17) 

  

2.3 Stochastic goal programming formulation 

The stochastic goal programming model was formulated by setting priorities, defining the objective function, and formulating the 

goal constraints as follows: 

Set priorities 

P1: Produce a batch of  𝐸[𝑀𝐹(𝑝, 𝑞)] units when demand is favorable 

P2: Produce a batch of  𝐸[𝑀𝑈(𝑝, 𝑞)] units when demand is unfavorable 

P3: Total production-inventory cost must not exceed 𝐸[𝐶𝐹(𝑝, 𝑞)] when demand is favorable 

P4: Total production-inventory cost must not exceed 𝐸[𝐶𝑈(𝑝, 𝑞)] when demand is unfavorable 
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Objective function 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑍 =  ∑4
𝑘=1 ∑3

𝑝=1 ∑ 𝑃𝑘(𝑝, 𝑞)3
𝑞=1 [𝑑𝑘

+ + 𝑑𝑘
−]     (18) 

Goal constraints 

P1: Manufacturing lot-size  𝐸[𝑀𝐹(𝑝, 𝑞)] - favorable demand 

𝑋𝐹𝐹(𝑝, 𝑞) + 𝑋𝐹𝑈(𝑝, 𝑞) + 𝑑1
− − 𝑑1

+ = 𝐸[𝑀𝐹(𝑝, 𝑞)]      (18.1) 

P2: Manufacturing lot-size  𝐸[𝑀𝑈(𝑝, 𝑞)]  -   unfavorable demand 

𝑋𝑈𝐹(𝑝, 𝑞) + 𝑋𝑈𝑈(𝑝, 𝑞) + 𝑑2
− − 𝑑2

+ = 𝐸[𝑀𝑈(𝑝, 𝑞)]                    (18.2) 

P3: Total production-inventory cost – favorable demand 

𝐶𝐹𝐹(𝑝, 𝑞)𝑋𝐹𝐹(𝑝, 𝑞) + 𝐶𝐹𝑈(𝑝, 𝑞) 𝑋𝐹𝑈(𝑝, 𝑞) − 𝑑3
+ = 𝐸[𝐶𝐹(𝑝, 𝑞)]    (18.3) 

P4: Total production-inventory cost – unfavorable demand 

𝐶𝑈𝐹(𝑝, 𝑞)𝑋𝑈𝐹(𝑝, 𝑞) + 𝐶𝑈𝑈(𝑝, 𝑞) 𝑋𝑈𝑈(𝑝, 𝑞) − 𝑑4
+ = 𝐸[𝐶𝑈(𝑝, 𝑞)]   (18.4) 

 

2.4 Stochastic goal programming model for manufacturing lot-size 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑍 =  ∑4
𝑘=1 ∑3

𝑝=1 ∑ 𝑃𝑘(𝑝, 𝑞)3
𝑞=1 [𝑑𝑘

+ + 𝑑𝑘
−]     (19) 

Subject to:  

𝑋𝐹𝐹(𝑝, 𝑞) + 𝑋𝐹𝑈(𝑝, 𝑞) + 𝑑1
− − 𝑑1

+ = 𝐸[𝑀𝐹(𝑝, 𝑞)]     (19.1) 

𝑋𝑈𝐹(𝑝, 𝑞) + 𝑋𝑈𝑈(𝑝, 𝑞) + 𝑑2
− − 𝑑2

+ = 𝐸[𝑀𝑈(𝑝, 𝑞)]     (19.2) 

𝐶𝐹𝐹(𝑝, 𝑞)𝑋𝐹𝐹(𝑝, 𝑞) + 𝐶𝐹𝑈(𝑝, 𝑞) 𝑋𝐹𝑈(𝑝, 𝑞) − 𝑑3
+ = 𝐸[𝐶𝐹(𝑝, 𝑞)]   (19.3) 

𝐶𝑈𝐹(𝑝, 𝑞)𝑋𝑈𝐹(𝑝, 𝑞) + 𝐶𝑈𝑈(𝑝, 𝑞) 𝑋𝑈𝑈(𝑝, 𝑞) − 𝑑4
+ = 𝐸[𝐶𝑈(𝑝, 𝑞)]   (19.4) 

𝑋𝐹𝐹(𝑝, 𝑞), 𝑋𝐹𝑈(𝑝, 𝑞), 𝑋𝑈𝐹(𝑝, 𝑞), 𝑋𝑈𝑈(𝑝, 𝑞), 𝑑1
−, 𝑑1

+, 𝑑2
−, 𝑑2

+, 𝑑3
+, 𝑑4

+ ≥ 0  (19.5) 

 

3. CASE STUDY 

In this section, a real case application from Movit Products Uganda limited was used to demonstrate the applicability of the proposed 

mathematical models. The manufacturing industry manufactures, distributes, and sells skin care, hair & nail care products. The 

numerical illustration contains real data for the first quarter of the year, which was collected and then reduced to usable dimensions 

as shown in Table 2. Data classification by state of demand was made, analyzed, and used in the proposed mathematical model.  

Considering a product D, for a given week, demand is favorable (state F) if Nij > 26 otherwise demand is unfavorable (state U) if 

Nij ≤ 26 as shown in Table 2. 

 

Table 2: Data classification by state of demand for product D 

Month Week Customers 

(N) 

Demand (D) 

(x103) 

On hand inventory (V)  

(x103) 

State of 

demand (i) 

1 

1 15 308 5263 U 

2 29 2891 7337 F 

3 24 1757 7081 U 

4 38 6619 5654 F 

2 

1 8 231 3525 U 

2 17 2046 6243 U 

3 15 1617 5922 U 

4 45 4443 5951 F 

3 

1 14 559 3765 U 

2 37 3686 4738 F 

3 28 1537 4980 F 

4 44 5626 5746 F 
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Tables 3a, 3b, and 3c show the overstocking or understocking of product D with the corresponding holding or shortage costs in the 

first quarter of the year. 

 

Table 3a: Overstocking and understocking with holding and shortage costs for month 1 

Week Demand (D) (x103) 
On hand inventory (V)  

(x103) 
over/under stocking 

Holding/shortage 

costs 

1 308 5263 4955 3121.65 

2 2891 7337 4446 2800.98 

3 1757 7081 5324 3354.12 

4 6619 5654 -965 3343.725 

 

Table 3b: Overstocking and understocking with holding and shortage costs for month 2 

Week Demand (D) (x103) 
On hand inventory (V)  

(x103) 
over/under stocking 

Holding/shortage 

costs 

1 231 3525 3294 2075.22 

2 2046 6243 4197 2644.11 

3 1617 5922 4305 2712.15 

4 4443 5951 1508 950.04 

 

Table 3c: Overstocking and understocking with holding and shortage costs for month 3 

Week Demand (D) (x103) 
On hand inventory (V)  

(x103) 
over/under stocking 

Holding/shortage 

costs 

1 559 3765 3206 2019.78 

2 3686 4738 1052 662.76 

3 1537 4980 3443 2169.09 

4 5626 5746 120 75.6 

    

           Figure 1: Overstocking and understocking of product D                 Figure 2: Holding and Shortage costs  

 

3.1 State transitions and on-hand inventory 

For a particular state transition, given the beginning and ending inventory, the average on-hand inventory was calculated as presented 

in Table 4. 
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Table 4: Average on-hand inventory for product D 

State transitions 

(𝒊, 𝒋) 

Beginning inventory (B) Ending inventory (E) Average on-hand inventory  

𝑽 = (𝑩 + 𝑬) 𝟐⁄  

FF 4980 5746 5363 

FU 7081 3765 5423 

UF 7337 4738 6037.5 

UU 6243 5922 6082.5 

 

From Equation (1) section 2, the average on-hand inventory was calculated giving; 

𝑉𝐹𝐹(𝐷, 1) = 5363         𝑉𝐹𝑈(𝐷, 1) = 5423          𝑉𝑈𝐹(𝐷, 1) = 6037.5         𝑉𝑈𝑈(𝐷, 1) = 6082.5 

Figure 3: Average on-hand inventory and state transitions 

 

3.2 Demand transition probabilities 

Data classification by state transition was done as illustrated in Table 5 and then used to calculate the demand transition probabilities 

for the product. 

 

Table 5: Data classification by state-transition for product D 

Month 

State transition 

(𝒊, 𝒋) 

Number of customers 

𝑵𝒊𝒋(𝑨, 𝟏) 

Demand 

𝑫𝒊𝒋(𝑨, 𝟏) 

1 

FF 0 0 

FU 53 4648 

UF 106 11575 

UU 0 0 

2 

FF 0 0 

FU 0 0 

UF 60 6060 

UU 57 5940 

3 

FF 137 12386 

FU 0 0 

UF 51 4245 

UU 0 0 
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From table 5, the Totals for customers and demand as it changes from one state to another are; 

Customers: 𝑁𝐹𝐹(𝐷, 1) = 137                                                  𝑁𝐹𝑈(𝐷, 1) = 53 

                     𝑁𝑈𝐹(𝐷, 1) = 106 + 60 + 51 = 217               𝑁𝑈𝑈(𝐷, 1) = 57  

Demand: 𝐷𝐹𝐹(𝐷, 1) = 12386                                                             𝐷𝐹𝑈(𝐷, 1) = 4648    

               𝐷𝑈𝐹(𝐷, 1) = 11575 + 6060 + 4245 = 21880           𝐷𝑈𝑈(𝐷, 1) = 5940 

From Equation (3) in section 2, the demand transition probabilities are; 

𝑄𝐹𝐹(𝐷, 1) =
𝑁𝐹𝐹(𝐷,1)

𝑁𝐹𝐹(𝐷,1)+𝑁𝐹𝑈(𝐷,1)
=

137

137+53
= 0.7211  

𝑄𝐹𝑈(𝐷, 1) =
𝑁𝐹𝑈(𝐷,1)

𝑁𝐹𝐹(𝐷,1)+𝑁𝐹𝑈(𝐶,1)
=

53

137+53
= 0.2789  

𝑄𝑈𝐹(𝐷, 1) =
𝑁𝑈𝐹(𝐷,1)

𝑁𝑈𝐹(𝐷,1)+𝑁𝑈𝑈(𝐷,1)
=

217

217+57
= 0.7920  

𝑄𝑈𝑈(𝐷, 1) =
𝑁𝑈𝑈(𝐷,1)

𝑁𝑈𝐹(𝐷,1)+𝑁𝑈𝑈(𝐷,1)
=

57

217+57
= 0.2080  

Hence the demand transition matrix as from equation (4), 

𝑄(𝐷, 1) =  
𝑭 𝑼

𝑭
𝑼

(
0.7211 0.2789
0.7920 0.2080

)
 

3.3 Demand matrix, inventory matrix, and production-inventory cost matrix 

The demand matrix, the inventory matrix, and the production-inventory cost matrix were developed as follows. 

From Equation (5), the demand matrix becomes; 

𝐷(𝐷, 1) =  
𝑭 𝑼

𝑭
𝑼

(
12386 4648
21880 5940

)
 

From Equation (6), the Inventory matrix becomes; 

𝑉(𝐷, 1) =  
𝐹 𝑈

𝐹
𝑈

(
5363 5423

6037.5 6082.5
)
 

Production-inventory cost matrix 

The production-inventory cost matrix is then computed for the product From Equations (7), (8), and (9). 

 Unit production cost, 𝐶𝑝(𝐷) = $ 31.5 

 Unit holding cost, 𝐶ℎ(𝐷) = $ 0.63 

 Unit shortage cost, 𝐶𝑠(𝐷) = $ 3.465 

𝐶𝐹𝐹(𝐷, 1) =  (𝐶𝑝(𝐷) + 𝐶ℎ(𝐷) + 𝐶𝑠(𝐷)) (𝐷𝐹𝐹(𝐷, 1) − 𝑉𝐹𝐹(𝐷, 1))  

𝐶𝐹𝐹(𝐷, 1) =  (31.5 + 0.63 + 3.465)(12386 − 5363) = 249983.685  

𝐶𝐹𝑈(𝐷, 1) = 𝐶ℎ(𝐷)(𝑉𝐹𝑈(𝐷, 1) − 𝐷𝐹𝑈(𝐷, 1))  

𝐶𝐹𝑈(𝐷, 1) =  0.63(5423 − 4648) = 488.25  

𝐶𝑈𝐹(𝐷, 1) =  (𝐶𝑝(𝐷) + 𝐶ℎ(𝐷) + 𝐶𝑠(𝐷)) (𝐷𝑈𝐹(𝐷, 1) − 𝑉𝑈𝐹(𝐷, 1))  

𝐶𝑈𝐹(𝐷, 1) =  (31.5 + 0.63 + 3.465)(21880 − 6037.5 ) = 563913.7875  

𝐶𝑈𝑈(𝐷, 1) =  𝐶ℎ(𝐷)(𝑉𝑈𝑈(𝐷, 1) − 𝐷𝑈𝑈(𝐷, 1))  

𝐶𝑈𝑈(𝐷, 1) =  (0.63)(6082.5 − 5940) = 89.775  

Hence, 

𝐶(𝐷, 1) =  
𝑭 𝑼

𝑭
𝑼

(
𝐶𝐹𝐹(𝐷, 1) 𝐶𝐹𝑈(𝐷, 1)

𝐶𝑈𝐹(𝐷, 1) 𝐶𝑈𝑈(𝐷, 1)
)
 

𝐶(𝐷, 1) =  
𝑭 𝑼

𝑭
𝑼

(
249983.685 488.25
563913.7875 89.775

)
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3.4 Expected demand, inventory, production-inventory costs, and manufacturing lot-size 

Expected demand 

After generating the demand transition matrix and formulating the production-inventory cost matrix, the expected demand expected 

inventory, and expected production-inventory costs are computed for the product considering both favorable and unfavorable 

demand as shown below; 

Favorable demand (F) was computed from equation (10)  

 𝐸[𝐷𝐹(𝐷, 1)] = 𝑄𝐹𝐹(𝐷, 1) ∗ 𝐷𝐹𝐹(𝐷, 1) + 𝑄𝐹𝑈(𝐷, 1) ∗ 𝐷𝐹𝑈(𝐷, 1)  

𝐸[𝐷𝐹(𝐷, 1)] = (0.7211 ∗ 12386) + (0.2789 ∗ 4648)  

𝐸[𝐷𝐹(𝐷, 1)] = 11227.8718 𝑢𝑛𝑖𝑡𝑠  

Unfavorable demand (U) was computed from equation (11) 

 𝐸[𝐷𝑈(𝐷, 1)] = 𝑄𝑈𝐹(𝐷, 1) ∗ 𝐷𝑈𝐹(𝐷, 1) + 𝑄𝑈𝑈(𝐷, 1) ∗ 𝐷𝑈𝑈(𝐷, 1)  

𝐸[𝐷𝑈(𝐷, 1)] = (0.7920 ∗ 21880) + (0.2080 ∗ 5940)  

𝐸[𝐷𝑈(𝐷, 1)] = 18564.48 𝑢𝑛𝑖𝑡𝑠  

Computation of the expected inventory considering both favorable and unfavorable demand for the product was computed from 

equation (12) as follows: 

Favorable demand (F) 

 𝐸[𝑉𝐹(𝐷, 1)] = 𝑄𝐹𝐹(𝐷, 1) ∗ 𝑉𝐹𝐹(𝐷, 1) + 𝑄𝐹𝑈(𝐷, 1) ∗ 𝑉𝐹𝑈(𝐷, 1)  

 𝐸[𝑉𝐹(𝐷, 1)] =  (0.7211 ∗ 5363) + (0.2789 ∗ 5423)  

𝐸[𝑉𝐹(𝐷, 1)] = 5379.734 𝑢𝑛𝑖𝑡𝑠  

Unfavorable demand (U) was computed from equation (13) as follows 

 𝐸[𝑉𝑈(𝐷, 1)] = 𝑄𝑈𝐹(𝐷, 1) ∗ 𝑉𝑈𝐹(𝐷, 1) + 𝑄𝑈𝑈(𝐷, 1) ∗ 𝑉𝑈𝑈(𝐷, 1)  

𝐸[𝑉𝑈(𝐷, 1)] =  (0.7920 ∗ 6037.5) + (0.2080 ∗ 6082.5)  

𝐸[𝑉𝑈(𝐷, 1)] = 6046.86 𝑢𝑛𝑖𝑡𝑠  

 

Expected production-Inventory costs 

The expected production-Inventory costs are then computed for the product considering both favorable and unfavorable demand 

results were computed from equations (14) and (15) as follows; 

Favorable demand (F) 

 𝐸[𝐶𝐹(𝐷, 1)] = 𝑄𝐹𝐹(𝐷, 1) ∗ 𝐶𝐹𝐹(𝐷, 1) + 𝑄𝐹𝑈(𝐷, 1) ∗ 𝐶𝐹𝑈(𝐷, 1)  

 𝐸[𝐶𝐹(𝐷, 1)] =  (0.7211 ∗ 249983.685) + (0.2789 ∗ 488.25)  

 𝐸[𝐶𝐹(𝐷, 1)] = $ 180399.4082  

Unfavorable demand (U) 

𝐸[𝐶𝑈(𝐷, 1)] = 𝑄𝑈𝐹(𝐷, 1) ∗ 𝐶𝑈𝐹(𝐷, 1) + 𝑄𝑈𝑈(𝐷, 1) ∗ 𝐶𝑈𝑈(𝐷, 1)  

𝐸[𝐶𝑈(𝐷, 1)] =  (0.7920 ∗ 563913.7875) + (0.2080 ∗ 89.775)  

𝐸[𝐶𝑈(𝐷, 1)] = $ 446638.3929  

 

Expected manufacturing lot size 

Computation of the expected manufacturing lot size considering both favorable and unfavorable demand for the product yields was 

computed from equations (16) and (17) as follows: 

Favorable demand (F) 

𝐸[𝑀𝐹(𝐷, 1)] =  (
𝐸[𝐷𝐹(𝐷, 1)] − 𝐸[𝑉𝐹(𝐷, 1)] 𝑖𝑓 𝐸[𝐷𝐹(𝐷, 1)] > 𝐸[𝑉𝐹(𝐷, 1)] 

0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
) 

𝐸[𝑀𝐹(𝐷, 1)] =  𝐸[𝐷𝐹(𝐷, 1)] − 𝐸[𝑉𝐹(𝐷, 1)] 

𝐸[𝑀𝐹(𝐷, 1)] = 11227.8718 −  5379.734 = 5848.1378 𝑢𝑛𝑖𝑡𝑠 
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Unfavorable demand (U) 

𝐸[𝑀𝑈(𝐷, 1)] =  (
𝐸[𝐷𝑈(𝐷, 1)] − 𝐸[𝑉𝑈(𝐷, 1)] 𝑖𝑓 𝐸[𝐷𝑈(𝐷, 1)] > 𝐸[𝑉𝑈(𝐷, 1)] 

0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
) 

𝐸[𝑀𝑈(𝐷, 1)] =  𝐸[𝐷𝑈(𝐷, 1)] − 𝐸[𝑉𝑈(𝐷, 1)] 

𝐸[𝑀𝑈(𝐷, 1)] =  18564.48 −  6046.86 = 12517.62 𝑢𝑛𝑖𝑡𝑠 

 

3.5 Stochastic goal programming model  

The stochastic goal programming model for the product was formulated by setting priorities, defining the objective function, and 

formulating the goal constraints as follows: 

Priorities set 

𝑃1: 𝑃𝑟𝑜𝑑𝑢𝑐𝑒 𝑎 𝑏𝑎𝑡𝑐ℎ 𝑜𝑓 5848.1378 𝑢𝑛𝑖𝑡𝑠 𝑤ℎ𝑒𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒  

𝑃2: 𝑃𝑟𝑜𝑑𝑢𝑐𝑒 𝑎 𝑏𝑎𝑡𝑐ℎ 𝑜𝑓 12517.62 𝑢𝑛𝑖𝑡𝑠 𝑤ℎ𝑒𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 𝑢𝑛𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 

𝑃3: 𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑠𝑡𝑠 𝑚𝑢𝑠𝑡 𝑛𝑜𝑡 𝑒𝑥𝑐𝑒𝑒𝑑 $ 180399.4082 

 𝑤ℎ𝑒𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑠 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒  𝑃4: 𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑠𝑡𝑠 𝑚𝑢𝑠𝑡 𝑛𝑜𝑡 𝑒𝑥𝑐𝑒𝑒𝑑 $ 446638.3929  

 𝑤ℎ𝑒𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑠 𝑢𝑛𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒  

Objective function 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ [𝑃𝐾(𝐷, 1)𝑑𝑘
+ + 𝑃𝐾(𝐷, 1)𝑑𝑘

−]4
𝑘=1   

Goal constraints 

Manufacturing lot size 

𝑋𝐹𝐹(𝐷, 1) + 𝑋𝐹𝑈(𝐷, 1) + 𝑑1
− =  5848.1378 (𝐹𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑑𝑒𝑚𝑎𝑛𝑑)  

𝑋𝑈𝐹(𝐷, 1) + 𝑋𝑈𝑈(𝐷, 1) + 𝑑2
− =  12517.62 (𝑈𝑛𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑑𝑒𝑚𝑎𝑛𝑑)  

Total production-Inventory costs 

249983.685𝑋𝐹𝐹(𝐷, 1) + 488.25𝑋𝐹𝑈(𝐷, 1) − 𝑑3
+ =  180399.4082 (𝐹𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑑𝑒𝑚𝑎𝑛𝑑)   

563913.7875𝑋𝑈𝐹(𝐷, 1) + 89.775𝑋𝑈𝑈(𝐷, 1) − 𝑑4
+ =  446638.3929 (𝑈𝑛𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑑𝑒𝑚𝑎𝑛𝑑)  

Non-negativity 

  𝑋𝐹𝐹(𝐷, 1), 𝑋𝐹𝑈(𝐷, 1), 𝑋𝑈𝐹(𝐷, 1), 𝑋𝑈𝑈(𝐷, 1), 𝑑1
−, 𝑑2

−, 𝑑3
+, 𝑑4

+  ≥ 0  

 

3.6 Stochastic goal programming model for manufacturing lot size  

The stochastic goal programming model for manufacturing lot size was then developed for the product as below. This determines 

the quantity of the product to manufacture in the first quarter of the year when demand changes from state i to state j for 𝑖, 𝑗 ∈ {𝐹, 𝑈}, 

establishing the over-achievement or under achievement of the manufacturing lot size priorities desired. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ [𝑃𝐾(𝐷, 1)𝑑𝑘
+ + 𝑃𝐾(𝐷, 1)𝑑𝑘

−]4
𝑘=1   

Subject to: 

 𝑋𝐹𝐹(𝐷, 1) + 𝑋𝐹𝑈(𝐷, 1) + 𝑑1
− =  5848.1378  

 𝑋𝑈𝐹(𝐷, 1) + 𝑋𝑈𝑈(𝐷, 1) + 𝑑2
− =  12517.62  

 249983.685𝑋𝐹𝐹(𝐷, 1) + 488.25𝑋𝐹𝑈(𝐷, 1) − 𝑑3
+ =  180399.4082   

 563913.7875𝑋𝑈𝐹(𝐷, 1) + 89.775𝑋𝑈𝑈(𝐷, 1) − 𝑑4
+ =  446638.3929  

 𝑋𝐹𝐹(𝐷, 1), 𝑋𝐹𝑈(𝐷, 1), 𝑋𝑈𝐹(𝐷, 1), 𝑋𝑈𝑈(𝐷, 1), 𝑑1
−, 𝑑2

−, 𝑑3
+, 𝑑4

+  ≥ 0  

Where: 

𝑑1
−, 𝑑2

− = slack variables 

𝑑3
+, 𝑑4

+ = surplus variables 

𝑋𝐹𝐹(𝐷, 1) – manufacturing lot size of product D when initially favorable demand remains favorable 

𝑋𝐹𝑈(𝐷, 1) - manufacturing lot size of product D when initially favorable demand becomes unfavorable 

XUF(D, 1) - manufacturing lot size of product D when initially unfavorable demand becomes favorable 

𝑋𝑈𝑈(𝐷, 1) - manufacturing lot size of product D when initially unfavorable demand remains unfavorable 
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4. RESULTS AND DISCUSSIONS 

In this study, the stochastic goal programming model for the product was solved using MATLAB. The values were inserted in 

MATLAB TM ([35], [36]) and using the linprog solver, an optimal solution was obtained with the values as shown in Table 6: 

 

Table 6: Optimal solution from MATLAB 

Variables  XFF (D,1) XFU (D,1) XUF (D,1) XUU (D,1) d1
- d2

- d3
+ d4

+ 

values  0 369.4816 0 12518 5478.7 0 0 677130 

 

The results highlight the optimal values of the manufacturing lot size of product A in the first quarter of the year as demand changes 

from one state to another. The results were analyzed and discussed based on the priorities set and the optimal values achieved as 

seen from table 6.  

The improvement of the solution from the case is establishing the over-achievement and under achievement of the manufacturing 

lot size priorities desired during production planning. An expansion, in this case, is incorporated in Markov chains which considers 

changes from one state to another. As seen from table 6, for cases where initially demand is favorable and unfavorable, more 

products shouldn’t be manufactured but use what is already in stock as it is enough to meet the demand since the model predicts 0 

manufacturing lot size of product A in the first quarter of the year. 

The model also predicts the manufacturing lot size of product A of 2.3729units and 104.0840 units when initially favorable demand 

becomes unfavorable and unfavorable demand remains unfavorable respectively. Meaning these number of products should be 

produced to meet demand. 

 

Table 7: Expected goal values and actual stochastic solution with over and under achievement 

Goals/ 

priorities 

Expected value 

from Goal 

Value of the 

stochastic solution 

Deviation Over-achievement Under-achievement 

1 5848.1378 5848.1816 0.0438  5478.7 

2 12517.62 12518 0.38  0 

3 180399.4082 180399.3912 0.017 0  

4 446638.3929 446673.45 35.0571 677130  

 

With the set priorities and expected values from each goal, the results from table 7 show the importance of utilizing the available 

sources of information when generating a plan. 

As observed from table 7, Priorities 1, 2, and 3 can be fully achieved however, an underachievement of 5478.7 units is realized in 

the first quarter when demand is initially favorable (state F). 

Priority 4 is partially achieved as the actual stochastic solution is slightly higher than the expected goal value targeted production-

inventory costs in the first quarter when demand is initially unfavorable (state U) and an over-achievement of 677130 units is 

realized. 

 

5. CONCLUSION 

A stochastic goal programming model that optimizes the manufacturing lot size under demand uncertainty was presented in this 

paper. The model determines the quantity of the product (with demand uncertainty to be produced in the first quarter of the year 

when demand changes from state i to state j for 𝑖, 𝑗 ∈ {𝐹, 𝑈}, establishing the over-achievement or underachievement of the 

manufacturing lot size priorities desired. The decision of whether or not to produce more units is modeled using Markov chains in 

conjunction with stochastic goal programming. The model was solved with the help of MATLAB software environment and the 

results indicate the optimal manufacturing lot sizes as demand changes from one state to another, establishing the over-achievement 

or underachievement of the manufacturing lot size priorities desired. 

Further research is sought to extend the proposed model to handle multiple products under demand and price uncertainty. In addition, 

weighted goal programming can be introduced to improve computational efficiency while handling pre-emptive priorities of the 

product. 
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