A brief review on Triazole and its Pharmacological Application

Kuldeep T. Padhyar¹, Rajendra S. Patil², Navanand B. Wadwale³
¹,²,³PG Dept. of Chemistry, MGVs Maharaja Sayajirao Gayakwad College Malegaon Camp Malegaon
Dist. Nashik MS-423105, India

ABSTRACT: The triazole core is one of the most imperative and well known heterocycles which is composed of nitrogen atom which forms natural products with medicinal claims. Triazole moiety is present as a principal structural component in the drug categories such as antimicrobial, anti-inflammatory, analgesic, antineoplastic, antimalarial, antiviral, antihypertensive, local anaesthetic, antianxiety, anti-Parkinson's, antidepressant, antioxidant, antihistaminic, antitubercular, antidiabetic etc. The broad and potent activity of triazole and their derivatives has established them as pharmacologically significant platforms. The elementary heterocyclic rings present in the numerous medicinal mediators are 1,2,3-triazole and 1,2,4-triazole. A huge capacity of investigations has been approved on triazole and their results, which has proved the pharmacological status of this heterocyclic core. The current paper is an try to review the pharmacological activities reported for triazole derivatives in the current literature with an apprise of current research discoveries on this nuclei.

KEYWORDS: 1,2,3-Triazole, 1,2,4-Triazole, Antitubercular, Antimalarial, Antimicrobial, Antiviral Such Activity.

INTRODUCTION
Triazole is acknowledged as pyrrodiazole is single class of organic heterocyclic complexes containing a five-membered Di unsaturated ring assembly composed of three N atoms and two C atoms at non-adjacent positions. The modest form of the triazole domestic is triazole itself. Triazole is a white to pale yellow crystalline solid with a weak, distinctive odour, it is resolvable in water and alcohols. It melts at 120°C and boils at 260°C. It occurs as a pair of isomeric chemical composites as 1,2,3-triazole and 1,2,4-triazole with molecular formula C₂H₃N₃, and a molecular weight of 69.06[1]. There are two isomers are,

\[
\begin{align*}
&\text{H} \\
&\text{N} \\
&\text{N} \\
&\text{1H-[1,2,3]Triazole} \\
&\text{H} \\
&\text{N} \\
&\text{N} \\
&\text{4H-[1,2,4]Triazole}
\end{align*}
\]

Kesavan Karthikeyan et al [2] reported the synthesized compound shows potent anti-fungal activity against the Candida albicans and Aspergillus niger pathogen.
Xuezhen Zhu et al [3] the group of scientist work describes the syntheses of diverse triazole bridged flavonoid dimers and identifies potent, nontoxic, and highly selective Breast Cancer Resistance Protein (BCRP) inhibitors.

Zhe Zhang et al [5] present work describes synthesis and biological activities of novel pleuromutilin derivatives with a substituted triazole moiety as potent antibacterial agents. A series of novel pleuromutilin derivatives possessing 1,2,3-triazole moieties were synthesized via click reactions under mild conditions. The in vitro antibacterial activities of these derivatives against 4 strains of S. aureus (MRSA ATCC 43300, ATCC 29213, AD 3, and 144) and 1 strain of E. coli (ATCC 25922) were tested by the broth dilution method.

Nashwa Hafez Zaher et al [6] existing work describes synthesis and molecular docking of novel triazole derivatives as potential CoV helicase inhibitors. Current investigation of anti-MERS-CoV activity of newly synthesized sixteen halogenated triazole compounds through the inhibition of helicase activity using the FRET assay. All new compounds underwent justification for their target structures via microanalytical and spectral data. SAR studies were performed and molecular docking done to check the activity.

Kesavan Karthikeyan et al [9] the group of co-workers Synthesize the1,2,3-triazole tethered 3-hydroxy-2-oxindoles: which is used as corrosion inhibitors for steel in acidic medium and their compound shows potent anti-microbial activity.

Nerella Sridhar Goud et al [10] reported the Novel benzimidazole-triazole hybrids as apoptosis inducing agents in lung cancer. They design and synthesis, 18F-radiolabeling & galectin-1 inhibition studies.

Arezoo Rastegari et al [12] have reported to design and synthesis of novel 1,2,3 triazole chromenone carboxamide derivatives which shows potent anti-Alzheimer’s activity.

Shaker A. Mousa et al [14] a group of scientists developed Triazole modified tetraiodothyro acetic acid conjugated to Polyethylene Glycol. Which shows high affinity thyrointegrin αv β3 Antagonist with Potent Anticancer Activities in Glioblastoma Multiforme.

Thayane M. Queiroz et al [15] have study the Semi-synthesis of β-keto-1,2,3-triazole derivatives from ethinylestradiol and the synthesized compound shows cytotoxic activity.

Renjith Raveendran Pillai et al [16] have Synthesize schiff bases tethered 1,2,4-triazole and pyrazole rings and spectroscopic characterization, to study DFT calculations, molecular dynamics simulations and biological evaluation compound.

Zahra Najafi et al [17] they developed the novel tacrine-coumarin hybrids linked 1,2,3-triazole compounds which shows as anti-Alzheimer’s activity. In vitro and in vivo biological evaluation of compound and also study docking.
Muhamad Mustafa et al [18] have synthesized a potent combretastatin A-4 analogs containing 1,2,4-triazole which carried out antiproliferative, anti-tubulin activity, and docking study.

Ana I Matesanz et al [19] developed the triazole thiosemicarbazone’ complexes. And analyse their reactivity and potential antitumoral activity.

Guo-qing Lu et al [20] reported the Design, synthesis and biological evaluation of novel uracil derivative bearing 1, 2, 3-triazole moiety as thymidylate synthase (TS) inhibitors and as potential antitumor drugs.

Shuai Li et al [21] reported the Design, synthesis and biological evaluation of erythrina derivatives bearing a 1,2,3-triazole moiety as PARP1 inhibitors.

Kashmiri Lal et al [22] study the Design, synthesis, antimicrobial evaluation and docking studies of urea-triazole-amide hybrids
Amandeep Kaur et al [23] Multifunctional Mono-Triazole Derivatives Inhibit Aβ42 Aggregation and Cu2+-Mediated Aβ42 Aggregation and Protect Against Aβ42-Induced Cytotoxicity.

![Chemical structure of multifunctional mono-triazole derivatives](image)

Oleksandr Grytsai et al [24] Synthesis and biological evaluation of 3-amino-1,2,4-triazole derivatives as potential anticancer compounds.

![Chemical structure of 3-amino-1,2,4-triazole derivatives](image)

Mehmet Çiftçi et al [25] In vitro cytotoxic and in vivo antitumoral activities of some aminomethyl derivatives of 2,4-dihydro-3H-1,2,4-triazole-3-thiones—Evaluation of their acetylcholinesterase and carbonic anhydrase enzymes inhibition profiles.

![Chemical structure of aminomethyl derivatives](image)

![Chemical structure of Osmium (II) complexes](image)

Xiangyi Jiang et al [27] have made Discovery of novel 1,4-disubstituted 1,2,3-triazole phenylalanine derivatives as HIV-1 capsid inhibitors.

![Chemical structures of 1,4-disubstituted 1,2,3-triazole phenylalanine derivatives](images)
Gur Jaspreet Singh * et al [28] Synthesis and characterization of microwave-assisted biologically active triazole silanes

David D. N’Da * et al [29] Synthesis and in vitro antimycobacterial and antileishmanial activities of hydroquinone-triazole hybrids.

Iwona E. Glowacka * et al [30] Synthesis and antimicrobial activity of novel 1,2,3-triazole-conjugates of quinazolin-4-ones.

Claire Simons * et al [31] Design and Synthesis of Imidazole and Triazole Pyrazoles as Mycobacterium Tuberculosis CYP121A1 Inhibitors

Sarbani Pal * et al [32] Synthesis, biological evaluation, and docking study of a series of 1,4-disubstituted 1,2,3-triazole derivatives with an indole-triazole-peptide conjugate

Zineb Khaldi * et al [33] showed the Synthesis, characterization, and antibacterial activities of a new lignocellulosic material carrying aryl triazole moiety.
Mohyeddin Assali et al [34] study the Synthesis, Biological Activity, and Molecular Modeling Studies of Pyrazole and Triazole Derivatives as Selective COX-2 Inhibitors.

R. Ramesh Raju et al [35] have studied the Design, Synthesis, and Anticancer Activity of 1,2,3-Triazole Linked 1,2-Isoxazole-imidazo[4,5-b] pyridine Derivatives.

Fabrice Pagniez et al [36] Biological exploration of a novel 1,2,4-triazoleindole hybrid molecule as antifungal agent.

Adinarayana Nandikolla et al [37] reported the Synthesis, study of antileishmanial and antitypansosomal activity of imidazo pyridine fused triazole analogues.

Raju Atcha et al [38] Design and Synthesis of Triazole Conjugated Novel 2,5-Diaryl Substituted 1,3,4-Oxadiazoles as Potential Antimicrobial and Anti-fungal Agents.

Artur M. S. Silva et al[40] have study A step-by-step synthesis of Triazole-Benzimidazole-Chalcone hybrids: Anticancer activity in human cells.

Ramesh Gondru et al[41] 1,2,3-triazole-thiazole hybrids: Synthesis, in vitro antimicrobial activity and antibiofilm studies.

Kishan P. Haval et al[42] report the Design and Synthesis of New Indanol-1,2,3-triazole Derivatives as Potent Antitubercular and Antimicrobial Agents.

Fluur Macaev et al[43] New vinyl-1,2,4-triazole derivatives as antimicrobial agents: Synthesis, biological evaluation and molecular docking studies.
Yaser Mahmoudi et al [44] the group of scientists have carried out the synthesis of New potent antifungal triazole alcohols containing N-benzylpiperazine carbodithioate moiety. Which shows in vitro evaluation and in silico study.

Deepti Goyal et al [45] they reported A novel series of triazole-based compounds have been designed, synthesised and evaluated as multi-target directed ligands (MTDLs) against Alzheimer disease.

Elson A. Costa et al [46] have reported the study to design, synthesize and evaluate the potential analgesic and anti-inflammatory effects of 5-[1-(4-fluorophenyl)-1H-1,2,3-triazol-4-yl]-1H-tetrazole (LQFM-096: a new triazole compound) as well as to elucidate its possible mechanisms of action study and Mechanisms involved in the antinociceptive and anti-inflammatory effects of a new triazole derivative: 5-[1-(4-fluorophenyl)-1H-1,2,3-triazol-4-yl]-1H-tetrazole (LQFM-096).

Yitao Li et al [47] have synthesized effective fungicide Novel Triazole Sulphonamide derivatives containing a Benzylamine Moiety which is applicable in the plant effective against cucumber downy mildew. They study triazole sulphonamide which played a very important role in the field of research to new agrochemical compounds formulation.
CONCLUSIONS

From the above information, it can be said that 1, 2, 4-triazole derivatives can be prepared using different methods like ring opening, rearrangement and substitution reaction. The biological profiles of these new derivatives of 1, 2, 4-triazole also reveal the therapeutic importance of it. An attempt of modify of the moiety will increase therapeutically uses of 1, 2, 4-triazole derivatives. These heterocyclic derivatives will result into introduction of therapeutically potent drugs. We must hope that further investigation gets carried on to find out more efficient derivatives of 1, 2, 4-triazole for such a disease whose treatment are challenging in the field of medical science.

ACKNOWLEDGEMENTS

The authors would like to thanks Principal MSG College Malegaon Dist. Nashik affiliated to Savitribai Phule Pune University, Pune, India for their guidance.

REFERENCES

16. RR Pillai, K Karrouchi, S Fettach, S Armaković, SJ Armaković, Y Brik, J Taoufik, S Radi, ME Abbès FM Ansar. Synthesis, spectroscopic characterization, reactive properties by DFT calculations, molecular dynamics simulations and biological evaluation of Schiff bases tethered 1,2,4-triazole and pyrazole rings. Journal of Molecular Structure 2860, 18 31119-0.
21. L Shuai, X-ying Li, TJ Zhang, J Zhu, WH Xue, XH Qian, F Meng. Design, synthesis and biological evaluation of erthrina derivatives bearing a 1,2,3-triazole moiety as PARP-1 inhibitors Bioorganic Chemistry 2020, 96 103575.
27. J Xiangyi, W Gaochan, AW Zalloum, ME Meuser, A Dick, Lin Sun, CH Chen, D Kang, L Jing, R Jia, S Cocklin, KH Lee, Xinyong Liu and P Zhan. Discovery of novel 1,4-disubstituted 1,2,3-triazole phenylalanine derivatives as HIV-1 capsid inhibitors. RSC Adv., 2019, 9, 28961–28986

45. CS Cardoso, PB Daiany Silva, DM. Silva, FI Florentino, JO. Fajemiroy, KS Lorraine JP Moreir, Vasconcelos, Germán Sanz, G Boniek, LM. Lião, DS, Lima, CA Fernanda dos Santos, R Menegatti, A Elson, Costa, Mechanisms involved in the antinociceptive and anti-inflammatory effects of a new triazole derivative: 5-[1-(4-fluorophenyl)-1H-1,2,3-triazol-4-yl]-1H-tetrazole (LQFM-096), Inflammoscience 2020, 1-20.

46. Y Li, Wenqiang Yao, JL, Falin Li, Yang Wu, and Junxing Xu, Design, Synthesis, and Biological Activity of Novel Triazole Sulfonamide Derivatives Containing a Benzyamine Moiety J. Heterocyclic Chem., 2019, 00 1-7